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Introduction 

UNIT - I 
METRIC SPACES 

A Metric Space is a set equipped with a reasonable concept of distance called a metric. 
That means to measure the distance between two elements in the set. 

1.1 Definition and Examples 

Definition:  

A Metric Space is a non empty set M together with a function     𝒅 ∶ 𝑴 × 𝑴 → 𝑹 

satisfying the following conditions. 
 

(i) 𝑑(𝑥 , 𝑦) ≥ 0 for all 𝑥 , 𝑦 ∈ 𝑀 

(ii) 𝑑(𝑥 , 𝑦) = 0 if and only if 𝑥 = 𝑦 

(iii) 𝑑(𝑥 , 𝑦) = 𝑑(𝑦 , 𝑥) for all 𝑥 , 𝑦 ∈ 𝑀 

(iv) 𝑑(𝑥 , 𝑧) ≤ 𝑑(𝑥 , 𝑦) + 𝑑(𝑦 , 𝑧) for all 𝑥 , 𝑦 , 𝑧 ∈ 𝑀 [ Triangle Inequality] 

 
𝑑 is called a metric or distance function on 𝑀 and 𝒅(𝒙 , 𝒚)is called the distance 

between 𝑥 and 𝑦 in 𝑀. The metric space M with the metric d is denoted by (𝑀 , 𝑑) or simply 
by 𝑀 when the underlying metric is clear from the context. 

 
Example 1. 
              (Usual Metric on R ) 

Let 𝑹 be the set of all real numbers. Define a function 𝑑 ∶ 𝑀 × 𝑀 → 𝑅 by 
𝑑(𝑥 , 𝑦)  =  | 𝑥 – 𝑦 |. Prove that d is a metric on 𝑹. 

Proof. 

Let 𝑥 , 𝑦 ∈ 𝑹. 
 

i) Clearly d (𝑥 , 𝑦) = | 𝑥 – 𝑦 | ≥ 0.  
 

ii) 𝑑(𝑥 , 𝑦 ) =  0 ⇔  |𝑥 – 𝑦 | = 0 
        ⇔       𝑥 – 𝑦 = 0 

                                           ⇔              𝑥 = 𝑦 

∴ 𝑑(𝑥 , 𝑦 ) =  0  ⇔ 𝑥 = 𝑦 

 
iii) 𝑑(𝑥 , 𝑦) =  | 𝑥  – 𝑦 | 
                             =  | 𝑦 –  𝑥 | 
                             =  𝑑(𝑦, 𝑥) 
            ∴ 𝑑(𝑥 , 𝑦)   =  𝑑(𝑦 , 𝑥). 
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iv) Let 𝑥 , 𝑦 , 𝑧 ∈ 𝑹. 
 

𝑑(𝑥 , 𝑧) = | 𝑥 – 𝑧 | 
 =  | 𝑥 –  𝑦  +  𝑦  −  𝑧 | 
 ≤  | 𝑥 –  𝑦 | + | 𝑦 –  𝑧 | 
 =  𝑑(𝑥 , 𝑦) + 𝑑(𝑦 , 𝑧). 

 
        ∴ 𝑑(𝑥 , 𝑧)  ≤  𝑑(𝑥 , 𝑦) + 𝑑(𝑦 , 𝑧). 

Hence 𝑑 is a metric on 𝑹. 
Example 2 
              (Usual Metric on C ) 

Let C be the set of all Complex  numbers.  Define a function 𝑑 ∶ 𝑀 × 𝑀 → C by 
𝑑(z , w) =  | z – w |   where z = x + i y   and w = u + iv .    Prove that d is a metric on C. 

Proof. 
        Let z, w ∈ C. 
 
i) d (z , w) = | z – w |   

                =   ඥ(𝑥 − 𝑢 )ଶ + (𝑦 − 𝑣)ଶ 
                 ≥ 0. 
        ∴  d (z , w)  ≥ 0. 
 

ii) 𝑑(𝑥 , 𝑦 ) =  0 ⇔  |z – w | = 0 
                             ⇔  ඥ(𝑥 − 𝑢 )ଶ + (𝑦 − 𝑣)ଶ 

        ⇔      (𝑥 − 𝑢 )ଶ + (𝑦 − 𝑣)ଶ = 0 

                                           ⇔      (𝑥 − 𝑢 )ଶ = 0  𝑎𝑛𝑑 (𝑦 − 𝑣)ଶ = 0 

                                           ⇔      (𝑥 − 𝑢 ) = 0  𝑎𝑛𝑑 (𝑦 − 𝑣)  = 0   

                                           ⇔        𝑥 = u  and  y = v 

                                           ⇔        𝑥 +i y  = u +iv 

∴ 𝑑(z , w ) =  0  ⇔ z = w. 

 
iii) d (z , w) = | z – w |   
                               =  | w  –  z | 
                               =  𝑑(w, z) 
            ∴ 𝑑(z , w)  =  𝑑(w , z). 
iv) Let  z , w , l  ∈ C . 

 
d( z , l ) = | z – l | 
              = | z – l + l -  w |   
               ≤  | z – l | + | l -  w |           
               =  d(z , l ) + d(l , w) 
 
     ∴ d( z , l ) ≤  d(z , l ) + d(l , w) 
 

Hence 𝑑 is a metric on C. 
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Example 3 
 ( Discrete metric on 𝑴 ) 

Let 𝑴 be any non-empty set.  Define a function 𝒅 ∶ 𝑴 × 𝑴 → 𝑹 by 
 

𝒅(𝒙, 𝒚) 
 𝟎 𝒊𝒇 𝒙 = 𝒚 

=  
 𝟏 𝒊𝒇 𝒙 ≠ 𝒚 

 

        Prove that  𝒅 is a metric on 𝑴.   

 

Proof. 

Let 𝑥 , 𝑦 ∈ 𝑀. 
Clearly 𝑑(𝑥 , 𝑦) ≥ 0   
and 𝑑(𝑥 , 𝑦 ) = 0 ⇔ 𝑥 = 𝑦 . 

 
0 𝑖𝑓 𝑥 = 𝑦 

𝑑(𝑥 , 𝑦)        =  
1 𝑖𝑓 𝑥 ≠ 𝑦 

 
0 𝑖𝑓 y = x 

                      =  
1 𝑖𝑓 y ≠ x 

 
  ∴ d(x , y )   = 𝑑(𝑦 , 𝑥) . 

 
Let 𝑥 , 𝑦 , 𝑧 ∈ 𝑀. 
We shall prove  that  𝑑(𝑥 , 𝑧)  ≤  𝑑(𝑥 , 𝑦) + 𝑑(𝑦 , 𝑧). 
Case (i) Suppose 𝑥 = 𝑧. 
Then (𝑥 , 𝑧) = 0  
 𝑑(𝑥 , 𝑦)  + 𝑑(𝑦 , 𝑧)  ≥  0 . 
∴ 𝑑(𝑥 , 𝑧) ≤ 𝑑(𝑥 , 𝑦) + 𝑑(𝑦 , 𝑧). 
Case (ii)        𝑥 ≠ 𝑧. 

Then  𝑑(𝑥 , 𝑧) = 1 . 

Also , since x, z are distinct , y  ≠ x and y ≠ z . 

∴  𝑑(𝑥 , 𝑦) +  𝑑(𝑦 , 𝑧) ≥  1 . 

∴ 𝑑(𝑥 , 𝑧)  ≤  𝑑(𝑥 , 𝑦) + 𝑑(𝑦 , 𝑧). 
 

In  the above cases,  𝑑(𝑥 , 𝑧) ≤ 𝑑(𝑥 , 𝑦) + 𝑑(𝑦 , 𝑧). 
 
  Hence d is metric on M. 
 
Note : 
                                                                                                          1/p                             1/p                            1/p  
By Minkowski ‘ s Inequality ,  “ If p ≥ 1 ,    ∑ |𝑥 +  𝑢|𝑝௡

௜ୀଵ       ≤   ∑ |𝑥|𝑝௡
௜ୀଵ    +     ∑ |𝑥|𝑝௡

௜ୀଵ     

 
 
Where a1, a2 , . . . , an    and  b1 , b2 , . . . , bn are real numbers. 
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Example 3                  
                           (Usual Metric on  Rn ) 
                                                                                                   1/2   
         In Rn  we define    d(x , y) =     ∑ (𝒙𝒊 − 𝒚𝒊)𝟐𝒏

𝒊ୀ𝟏             where  x  = ( x1 , x2 , . . . , xn)  and    
 
y  =  (y1, y2 , . . . , yn ).   Prove that  d is a metric on  Rn . 

 
Proof : 
 
Given that                                                                         
                                                                            1/2                                                                       
                           d(x , y) =     ∑ (𝒙𝒊 − 𝒚𝒊)𝟐𝒏

𝒊ୀ𝟏             where  x  = ( x1 , x2 , . . . , xn)  and    
 
  y  =  (y1, y2 , . . . , yn ).  
 

                                                                           1/2      

i) d (𝑥 , 𝑦) =        ∑ (𝒙𝒊 − 𝒚𝒊)𝟐𝒏
𝒊ୀ𝟏                       ≥ 0.  

                                                                                     1/2      
ii) 𝑑(𝑥 , 𝑦 ) =  0 ⇔     ∑ (𝒙𝒊 − 𝒚𝒊) 𝟐             𝒏

𝒊ୀ𝟏 = 0 
 

                              ⇔     ∑ (𝒙𝒊 − 𝒚𝒊)𝟐𝒏
𝒊ୀ𝟏           = 0  

 
                                           ⇔    (𝒙𝒊 − 𝒚𝒊)𝟐  = 0    for each i = 1 , 2 , . . . , n 
        ⇔       𝑥i – 𝑦i = 0          for each i = 1 , 2 , . . . , n 

                                           ⇔              𝑥i  = 𝑦i        for each i = 1 , 2 , . . . , n 

                                           ⇔               x = y . 

∴ 𝑑(𝑥 , 𝑦 ) =  0   ⇔    𝑥 = 𝑦 

 
                                                                           1/2      

iii) d (𝑥 , 𝑦) =        ∑ (𝒙𝒊 − 𝒚𝒊)𝟐𝒏
𝒊ୀ𝟏                    

                                                                         1/2      
                =       ∑ (𝒚𝒊 − 𝒙𝒊) 𝟐             𝒏

𝒊ୀ𝟏  
 
                =     d(y, x) 
 

iv) Let x ,  y , z ∈ Rn. 
To prove that   d (x , z)  ≤  d (x , y)  + d (y , z) 

  
Take ai = xi – yi ,  bi = yi – zi  and  p = 2  and using 

 
 
                                                                                                             1/2                                 1/2                           1/2  

       Minkowski ‘ s  Inequality ,  we have      ∑ |𝑥𝑖 − 𝑦𝑖 |2௡
௜ୀଵ       ≤   ∑ |𝑥|2௡

௜ୀଵ  +      ∑ |𝑥|2௡
௜ୀଵ     

 
 
                    ∴ d (x , z)  ≤  d (x , y)  + d (y , z) 

                                Hence  d is a metric on  Rn . 
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1.2.Open Sets in a  Metric Space 

 
Definition: 

 Let (𝑀 , 𝑑) be a metric space. Let 𝑎 ∈ 𝑀 and 𝑟 be a positive real number.  The open ball 
or the open sphere with center 𝑎 and radius𝑟 is denoted by 𝐵𝑑 (𝑎 , 𝑟) and is the subset of M 
defined by 𝐵𝑑 (𝑎 , 𝑟) = {𝑥 ∈ 𝑀 ⁄ 𝑑(𝑎 , 𝑥) < 𝑟}. We write 𝐵(𝑎 , 𝑟) for 
𝐵𝑑 (𝑎 , 𝑟) if the metric 𝑑 under consideration is clear. 

Examples: 
 
1. In 𝑹 with usual metric 𝐵(𝑎 , 𝑟) = (𝑎 − 𝑟 , 𝑎 + 𝑟). 
 

2. In 𝑹𝟐  with usual metric 𝐵(𝑎 , 𝑟) is the interior of the circle with  center  𝑎and 
radius𝑟. 

 
Definition: Let (𝑀 , 𝑑) be a metric space. A subset 𝐴 of 𝑀 is said to be open in 𝑀 if for each 
𝑥 ∈ 𝐴 there exists a real number 𝑟 > 0 such that 𝐵(𝑥 , 𝑟) ⊆ 𝐴. 

 
Note. By the definition of open set, it is clear that 𝜙 and 𝑀 are open sets. 

 

Examples: 
1. Any open interval (𝑎 , 𝑏) is an open set in 𝑹 with usual metric. 

 
Proof : 
Let 𝑥 ∈ (𝑎 , 𝑏). 

Choose a real number 𝑟 such that 0 < 𝑟 ≤ 𝑚𝑖𝑛 { 𝑥 − 𝑎 , 𝑏 − 𝑥 }. 

Then 𝐵(𝑥 , 𝑟) ⊆ (𝑎 , 𝑏). 

∴ (𝑎 , 𝑏)  is open in 𝑅. 
 

2. Every subset of a discrete metric space 𝑀 is open.  

Proof : 

       Let 𝐴 be a subset of 𝑀. 
If 𝐴 = 𝜙, then 𝐴 is open. 
Otherwise, let 𝑥 ∈ 𝐴. 
Choose a real number 𝑟 such that 0 < 𝑟 ≤ 1. Then 
𝐵(𝑥 , 𝑟) = { 𝑥 } ⊆ 𝐴 and hence 𝐴 is open. 
 

3. Set of all rational numbers 𝑸 is not open in 𝑹.  

Proof : 

Let 𝑥 ∈ 𝑸. 

For any real number 𝑟 > 0, 𝐵(𝑥 , 𝑟) = (𝑥 − 𝑟 , 𝑥 + 𝑟) contains both rational and irrational 
numbers. 
∴ 𝐵(𝑥 , 𝑟) ⊈ 𝑸and hence 𝑸 is not open. 
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Theorem 1.1 

Let (𝑀 , 𝑑) be a metric space. Then each open ball in 𝑀 is an open set. 
 

Proof. 
 

Let 𝐵(𝑎 , 𝑟) be an open ball in 𝑀. 
Let 𝑥 ∈ 𝐵(𝑎 , 𝑟). 
Then 𝑑(𝑎 , 𝑥) < 𝑟. 
Take𝑟1 = 𝑟 – 𝑑(𝑎 , 𝑥).Then 𝑟1 > 0. 
We claim that  𝐵( 𝑥 , 𝑟1) ⊆ 𝐵( 𝑎 ,z).   
 
Let 𝑦 ∈ 𝐵( 𝑥 , 𝑟1). 
Then (𝑥 , 𝑦) < 𝑟1.  
 
Now, 
     𝑑(𝑎 , 𝑦) ≤ 𝑑(𝑎 , 𝑥) + 𝑑(𝑥 , 𝑦) 

                    < 𝑑(𝑎 , 𝑥) + 𝑟1 
                    = 𝑑(𝑎 , 𝑥) + 𝑟 – 𝑑(𝑎 , 𝑥) = 𝑟. 
∴ 𝑑(𝑎 , 𝑦)  <  𝑟. 
∴ 𝑦  ∈  𝐵(𝑎 , 𝑟). 
∴ 𝐵( 𝑥 , 𝑟1) ⊆ 𝐵( 𝑎 , 𝑟). 
Hence 𝐵(𝑎 , 𝑟) is an open ball. 

 

Theorem1.2 

In any metric space 𝑀, the union of open sets is open. 
 

Proof. 
 

Let (𝑴, 𝒅) be a Metric Space. 
Let{𝐴𝑖/𝑖 ∈ 𝐼} a family of open sets in M.  
 
We have to prove 𝐴 = ∪ 𝐴𝑖 is open in M. 
If 𝐴 = 𝜙 then 𝐴 is open. 
∴Let 𝐴 ≠ 𝜙. Let 𝑥 ∈ 𝐴. 
Then 𝑥 ∈ 𝐴𝑖 for some ∈ 𝐼. 
Since 𝐴𝑖 is open, there exists an open ball 𝐵(𝑥 , 𝑟) such that 𝐵(𝑥 , 𝑟) ⊆ 𝐴𝑖. 

 
∴ 𝐵(𝑥 , 𝑟) ⊆  𝐴. 
Hence 𝐴 is open in 𝑀. 

 
Theorem 1.3 

 
In any metric space 𝑀, the intersection of a finite number of open sets is open. 

 
Proof: 

 
Let 𝐴1, 𝐴2, … . , 𝐴𝑛 be open sets in M. 

 
We have to prove 𝐴 = 𝐴1 ∩ 𝐴2 ∩ … .∩ 𝐴𝑛is open in M. 
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If 𝐴 = 𝜙 then 𝐴 is open. 
∴Let 𝐴 ≠ 𝜙. Let 𝑥 ∈ 𝐴. 
Then   𝑥 ∈ 𝐴𝑖 for each 𝑖 = 1, 2, … , 𝑛. 
Since each 𝐴𝑖is open, there exists an open ball 𝐵(𝑥 , 𝑟𝑖) such that 𝐵(𝑥 , 𝑟𝑖) ⊆ 𝐴𝑖. 
Take 𝑟 = 𝑚𝑖𝑛 { 𝑟1 , 𝑟2 , … , 𝑟𝑛 }. 

Clearly,𝑟 > 0 and 
𝐵(𝑥 , 𝑟) ⊆ 𝐵(𝑥 , 𝑟𝑖)for all 𝑖 = 1, 2, … , 𝑛. 
Hence 𝐵(𝑥 , 𝑟) ⊆ 𝐴𝑖 for each 𝑖 = 1, 2, … , 𝑛. 
∴  𝐵(𝑥 , 𝑟)  ⊆  𝐴. 
∴  𝐴is open in 𝑀. 

 
Theorem 1.4 

 
Let (𝑀 , 𝑑) be a metric space and 𝐴 ⊆ 𝑀. Then 𝐴 is open in 𝑀 if and only if 𝐴 can be expressed 
as union of open balls. 

Proof : 

Suppose that 𝐴 is open in 𝑀. 
 

Then for each 𝑥 ∈ 𝐴 there exists an open ball 𝐵(𝑥 , 𝑟𝑥) such that,𝐵(𝑥 , 𝑟𝑥) ⊆ 𝐴. 

𝐴 = ⋃𝑥∈𝐴 𝐵(𝑥, 𝑟𝑥). 
 

Thus 𝐴 is expressed as union of open balls. 
 

Conversely, assume that 𝐴 can be expressed as union of open balls. Since 
open balls are open and union of open sets is open, 𝐴 is open. 

 
1.2 Interior of a set 

 
Definition: 

Let (𝑀 , 𝑑) be a metric space and 𝐴 ⊆ 𝑀.   A point 𝑥 ∈ 𝐴 is said to be an interior  
point of 𝐴 if there exists a real number 𝑟 > 0 such that 𝐵(𝑥 , 𝑟) ⊆ 𝐴.  
 

The set of all interior points is called as interior of 𝐴 and it  is denoted by 𝑰𝒏𝒕 𝐴. 

Note: 𝑰𝒏𝒕 𝐴 ⊆ 𝐴. 
 

Example: In 𝑹 with usual metric, let 𝐴 = [1 , 2]. 1 is not an interior points of A, since for any 
real number > 0 , 𝐵(1 , 𝑟) = (1 – 𝑟 , 1 + 𝑟) contains real numbers less than 1. 
 Similarly, 2 is also not an interior point of 𝐴. In fact every point of (1 , 2) is a limit point of 𝐴. 
Hence 𝑰𝒏𝒕𝐴 = (1 ,2). 
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Note: 
(1)𝑰𝒏𝒕 𝝓 = 𝝓 𝑎𝑛𝑑 𝑰𝒏𝒕 𝑀 = 𝑀. 
(2)𝐴 𝑖𝑠 𝑜𝑝𝑒𝑛 ⇔ 𝑰𝒏𝒕 𝐴 = 𝐴.  
(3)𝐴 ⊆ 𝐵 ⇒ 𝑰𝒏𝒕 𝐴 ⊆ 𝑰𝒏𝒕𝐵. 

 
Theorem1.5 

 
Let (𝑀 , 𝑑) be a metric space and 𝐴 ⊆ 𝑀. Then 𝑰𝒏𝒕 𝐴 = Union of all open sets contained in 
𝐴. 

Proof. 
Let 𝐺 = ∪{B/B is an open set contained in A} 
we have to prove 𝑰𝒏𝒕 𝐴 = 𝐺. 
Let 𝑥 ∈ 𝑰𝒏𝒕 𝐴 . 

 
Then 𝑥 is an interior point of 𝐴. 
∴ there exists a real number 𝑟 > 0 such that 𝐵(𝑥 , 𝑟) ⊆ 𝐴. 
Since open balls are open, 𝐵(𝑥 , 𝑟) is an open set contained in 𝐴. 
∴ 𝐵(𝑥 , 𝑟) ⊆ 𝐺. 
∴ 𝑥 ∈ 𝐺. 
∴ 𝑰𝒏𝒕 𝐴 ⊆ 𝐺 ................................................................ (*) 

 
Let ∈ 𝐺 . 
Then there exists an open set𝐵 such that 𝐵 ⊆ 𝐴and 𝑥 ∈ 𝐵. 
Since 𝐵 is open and 𝑥 ∈ 𝐵, there exists a real number 𝑟 > 0 such that 𝐵(𝑥 , 𝑟) ⊆ 𝐵 ⊆ 𝐴. 
∴ 𝑥is an interior point of 𝐴. 
∴ 𝑥 ∈ 𝑰𝒏𝒕 𝐴 . 
∴ 𝐺 ⊆ 𝑰𝒏𝒕𝐴 .............................................................. (**) 

 
From (*) and (**), we get 𝑰𝒏𝒕 𝐴 = 𝐺. 
 
Note:𝑰𝒏𝒕 𝐴 is an open set and it is the largest open set contained in A. 

 
Theorem1.6 

 

Let 𝑀 be a metric space and 𝐴 , 𝐵 ⊆ 𝑀. Then 
 

i) 𝑰𝒏𝒕 (𝐴  ∩  𝐵) = (𝑰𝒏𝒕 𝐴) ∩ (𝑰𝒏𝒕𝐴) 

ii) 𝑰𝒏𝒕 (𝐴  ∪  𝐵) ⊇ (𝑰𝒏𝒕 𝐴) ∪ (𝑰𝒏𝒕𝐴) 
 

Proof. 

i) 𝐴 ∩ 𝐵 ⊆ 𝐴 ⇒ 𝑰𝒏𝒕(𝐴 ∩ 𝐵) ⊆ 𝑰𝒏𝒕 𝐴. 

Similarly, 𝑰𝒏𝒕 (𝐴 ∩ 𝐵) ⊆ 𝑰𝒏𝒕 𝐵. 

∴ 𝑰𝒏𝒕 (𝐴 ∩ 𝐵) ⊆ (𝑰𝒏𝒕 𝐴) ∩ (𝑰𝒏𝒕𝐴) .................................................................................... (a) 
 

𝑰𝒏𝒕𝐴 ⊆ 𝐴 𝑎𝑛𝑑 𝑰𝒏𝒕 𝐵 ⊆ 𝐵 . 
 

∴ (𝑰𝒏𝒕 𝐴) ∩ (𝑰𝒏𝒕 𝐴) ⊆ 𝐴 ∩ 𝐵 
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Now, (𝑰𝒏𝒕 𝐴) ∩ (𝑰𝒏𝒕 𝐴) is an open set contained in ∩ 𝐵 . 

But, 𝑰𝒏𝒕 (𝐴 ∩ 𝐵) is the largest open set contained in ∩ 𝐵 . 
∴ (𝑰𝒏𝒕 𝐴) ∩ (𝑰𝒏𝒕 𝐴) ⊆ 𝑰𝒏𝒕 (𝐴 ∩ 𝐵) ............................................................................... (b) 

 
From (a) and (b) , we get 𝑰𝒏𝒕(𝐴 ∩ 𝐵) = (𝑰𝒏𝒕𝐴) ∩ (𝑰𝒏𝒕𝐴) 

 
(ii)  𝐴 ⊆ 𝐴 ∪ 𝐵 ⇒ 𝑰𝒏𝒕𝐴 ⊆ 𝑰𝒏𝒕(𝐴 ∪ 𝐵) 

Similarly, 𝑰𝒏𝒕 𝑩 ⊆ 𝑰𝒏𝒕 (𝐴 ∪ 𝐵) 

∴ 𝑰𝒏𝒕(𝐴 ∪ 𝐵) ⊇ (𝑰𝒏𝒕𝐴) ∪ (𝑰𝒏𝒕𝐴) 
 

Note1.7: 𝑰𝒏𝒕(𝐴 ∪ 𝐵) need not be equal to 𝑰𝒏𝒕𝐴  ∪  𝑰𝒏𝒕 𝐴  

For, 
In 𝑹 with usual metric, 
Let 𝐴 = (0,1] and 𝐵 = (1,2). 

Then  𝐴 ∪ 𝐵 = (0,2). 
∴ 𝑰𝒏𝒕(𝐴 ∪ 𝐵) = (0,2) 

Now, 𝑰𝒏𝒕𝐴 = (0,1) and 𝑰𝒏𝒕𝐵 = (1,2) and hence 𝑰𝒏𝒕𝐴 ∪ 𝑰𝒏𝒕𝐴 = (0,2)– {2}. 
∴ 𝑰𝒏𝒕(𝐴 ∪ 𝐵) ≠ (𝑰𝒏𝒕𝐴) ∪ (𝑰𝒏𝒕 𝐴) 

 
1.2.Subspace  
 
Definition: 

Let(𝑀 , 𝑑) be a metric space. Let 𝑀1 be a nonempty subset of 𝑀. Then 𝑀1 is also a 
metric space under the same metric d. We call (𝑀1, 𝑑) is a subspace of (𝑀, 𝑑). 

Theorem1.8 

Let 𝑀 be a metric space and 𝑀1 a subspace of 𝑀. Let 𝐴 ⊆ 𝑀1. Then 𝐴1 is open in 
𝑀1 if and only if 𝐴1 = A ∩ 𝑀1 where 𝐴 is open in M. 

 

Proof: 
 

Let 𝑴𝟏 be a subspace of 𝑴. Let 𝒂 ∈ 𝑴𝟏. 
Let 𝑀1(𝑎 , 𝑟) be the open ball in 𝑀1 with center 𝑎 and radius 𝑟. 
Then 𝐵1(𝑎, 𝑟) = 𝐵(𝑎, 𝑟) ∩ 𝑀1where 𝐵(𝑎, 𝑟) is the open ball in 𝑀 with center 𝑎 and radius 𝑟. 
Then 𝐵1(𝑎, 𝑟) = {𝑥 ∈ 𝑀1/𝑑(𝑎, 𝑥) < 𝑟}. 
 
Also, 𝐵(𝑎, 𝑟) = {𝑥 ∈ 𝑀/𝑑(𝑎, 𝑥) < 𝑟}. 
Hence,𝐵1(𝑎, 𝑟) = 𝐵(𝑎, 𝑟) ∩ 𝑀1. 
 
Let 𝐴1 be an open set in M1. 
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          Then A  =  B1 (x , r (x) ) 

        = ⋃𝑥∈𝐴1
[𝐵(𝑥, 𝑟(𝑥)) ⋂ 𝑀1] 

        =[⋃𝑥∈𝐴1 
𝐵(𝑥, 𝑟(𝑥))] ⋂ 𝑀1 

        = A ⋂ 𝑀1 

Where A = ⋃𝑥∈𝐴1 𝐵(𝑥, 𝑟(𝑥))which is open in 𝑀. 
 
Conversely, let 𝐴 = 𝐺 ∩ 𝑀1 where 𝐺 is open in 𝑀. 
We shall prove that 𝐴1 is open in M. 
Let 𝑥 ∈ 𝐴1. 
Then 𝑥 ∈ 𝐴 𝑎𝑛𝑑 𝑥 ∈ 𝑀1. 

Since 𝐴 is open in 𝑀, there exists an open ball B(x ,r) such that B(x ,r)⊆A. 

∴ 𝐵(𝑥, 𝑟)𝑀1 ∩⊆ 𝐴 ∩ 𝑀1. 
i.e. 𝐵1(𝑥, 𝑟) ⊆ 𝑀1. 

∴ 𝐴1is open in 𝑀1. 
 

1.2.Bounded Sets in a Metric space. 
 

Definition: 
Let(𝑀, 𝑑)be a metric space. A subset 𝐴 of 𝑀 is said to be bounded if there exists a positive 

real number 𝑘 such that 𝑑(𝑥, 𝑦) ≤ 𝑘 ∀ 𝑥, 𝑦 ∊ 𝐴. 

Example: 

Any finite subset 𝐴 of a metric space (𝑀 , 𝑑) is bounded. 

For, 

 Let 𝐴 be any finite subset of 𝑀. 

If 𝐴 = 𝜙,  then 𝐴 is obviously bounded. 
 

Example: 
[0,1] is a bounded subset of 𝑹 with usual metric since 𝑑(𝑥, 𝑦) ≤ 1 for all 𝑥, 𝑦 ∊ [0,1]. 

Example: 

(0, ∞) is an unbounded subset of 𝑹. 
Example: 

Any subset 𝐴 of a discrete metric space 𝑀 is bounded since 
 

𝑑(𝑥, 𝑦) ≤ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ 𝐴. 
Note:  

Every open ball 𝐵(𝑥, 𝑟) in a metric space (𝑀, 𝑑) is bounded. 
 

Definition: 
Let(𝑀, 𝑑) be a metric space and 𝐴 ⊆ 𝑀. The diameter of 𝐴, denoted by 𝑑(𝐴), is defined 

by 𝑑(𝐴) = 𝑙. 𝑢. 𝑏 {𝑑(𝑥, 𝑦)/𝑥, 𝑦 ∈ 𝐴}. 
 

Example: 
In𝑅 with usual metric the diameter of any interval is equal to the length of the 

interval. The diameter of [0,1] is 1. 
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2.1.ClosedSets 

UNIT – II 
CLOSED SETS 

 

Definition:  
A subset 𝐴 of a metric space 𝑀 is said to be closed in 𝑀 if its complement  A  is open in 

𝑀. 
 

Examples 
 

1. In 𝑹 with usual metric any closed interval [𝑎, 𝑏] is closed. 
 For, 
[𝑎 , 𝑏]𝑐 = 𝑹– [𝑎 , 𝑏] = ( −∞ , 𝑎) ∪ (𝑏 , ∞). 
(−∞, 𝑎) and (𝑏, ∞) are open sets in R and hence (−∞ , 𝑎) ∪ (𝑏 , ∞) is open in R. 
i.e. [𝑎 , 𝑏]𝑐 is open in 𝑹. 
∴ [𝑎 , 𝑏] is open in 𝑹. 

 
2. Any subset 𝐴 of a discrete metric space 𝑀 is closed since 𝐴𝑐  is open as every subset of 𝑀 

Is open. 
 
Note. In any metric space 𝑀, 𝜙 and 𝑀 are closed sets since 𝜙𝑐 = 𝑀 and 𝑀𝑐 = 𝜙 which  are  
open in 𝑀. Thus 𝜙 and 𝑀 are both open and closed in 𝑀. 

 
Theorem 2.1. 

 
  In any metric space 𝑀, the union of a finite number of closed sets is closed. 

 
Proof: 

 
Let (𝑴, 𝒅) be a Metric space. 

 
Let 𝑩[𝒂, 𝒓] be a closed ball in 𝑴. 
Case (i) Suppose 𝑩[𝒂, 𝒓]𝒄 = 𝝓 

∴ 𝑩[𝒂, 𝒓]𝒄is open and hence 𝑩[𝒂, 𝒓] is closed. 
Case (ii) Suppose 𝑩[𝒂, 𝒓]𝒄 ≠ 𝝓 

Let 𝒙 ∈ 𝑩[𝒂, 𝒓]𝒄. 

∴ 𝒙 ∉ 𝑩[𝒂, 𝒓]𝒄. 

∴ 𝒅(𝒂, 𝒙) > 𝒓 
 

∴ 𝒅(𝒂, 𝒙) − 𝒓 > 𝟎. 
Let 𝒓𝟏 = 𝒅(𝒂, 𝒙) − 𝒓. 

 
We claim that 𝑩(𝒙, 𝒓𝟏) ⊆ 𝑩[𝒂, 𝒓]𝒄. 
Let 𝒚 ∈ 𝑩(𝒙, 𝒓𝟏). 
Then 𝒅(𝒙, 𝒚) < 𝒓𝟏 = 𝒅(𝒂, 𝒙) − 𝒓. 

∴ 𝒅(𝒂, 𝒙) > 𝒅(𝒙, 𝒚) + 𝒓. 
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Now, 𝒅(𝒂, 𝒙) ≤ 𝒅(𝒂, 𝒚) + 𝒅(𝒚, 𝒙). 
         𝒅(𝒂, 𝒚) ≥ 𝒅(𝒂, 𝒙) − 𝒅(𝒚, 𝒙). 

                         > 𝒅(𝒙, 𝒚) + 𝒓 − 𝒅(𝒚, 𝒙). 
                         = 𝒓. 
Thus   𝒅(𝒂, 𝒚) > 𝒓. 
         ∴ 𝒚 ∉ 𝑩[𝒂, 𝒓]. 
Hence 𝒚 ∈ 𝑩[𝒂, 𝒓]𝒄. 
 
∴ 𝑩(𝒙, 𝒓𝟏) ⊆ 𝑩[𝒂, 𝒓]𝒄. 

∴ 𝑩[𝒂, 𝒓]𝒄   is open in 𝑴. 

∴ 𝑩[𝒂, 𝒓]    is closed in 𝑴. 
 

Theorem 2.2 

In any metric space 𝑀, arbitrary intersection of closed sets is closed. 
 

Proof: 
 

Let (𝑴, 𝒅) be a metric space. 
 

Let {𝑨𝒊/𝒊 ∈ 𝑰}be a family of closed sets in 𝑴. 
We have to prove ⋂𝑖∈𝐼 𝐴𝑖 is closed. 
We have (⋂𝑖∈𝐼 𝐴𝑖 )

𝑐 = ⋃𝑖∈𝐼 𝐴𝑖 
𝑐

 

(by De Morgan’s law) 
Since 𝐴𝑖 is closed 𝐴𝑖𝑐 is open. 
Hence ⋃𝑖∈𝐼 𝐴𝑖𝑐  is  open. 
∴ (⋂𝑖∈𝐼 𝐴𝑖)𝑐  is open in 𝑀. 

∴⋂𝑖∈𝐼 𝐴𝑖 is closed in 𝑀. 
 

Theorem 2.3 
 

Let 𝑀1 be a subspace of a metric space 𝑀. Let 𝐹1 ⊆ 𝑀1.  Then 𝐹1 is closed in 𝑀1 if and only 
if  𝐹1 = 𝐹 ∩ 𝑀1 where 𝐹 is a closed set in 𝑀. 

 
Proof. 

 
Suppose that 𝐹is closed in  𝑀1. 
Then 𝑀1 – 𝐹1 is open in𝑀1. 
∴ 𝑀1– 𝐹1 = 𝐴𝑐 ∩ 𝑀1where𝐴 is open in 𝑀. 

Now, 𝐹1 = 𝐴 ∩ 𝑀1. 

Since 𝐴 is open in 𝑀, 𝐴𝑐 is closed in 𝑀. 

Thus, 𝐹1 = 𝐹 ∩ 𝑀1where 𝐹 = 𝐴𝑐 is closed in 𝑀. 

Conversely, assume that 𝐹1 = 𝐹 ∩ 𝑀1 where 𝐹 is closed in 𝑀. 

Since 𝐹 is closed in 𝑀, 𝐹𝑐is open in 𝑀. 

∴𝐹𝑐 ∩ 𝑀1 is open in 𝑀1. 
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Now, 𝑀1– 𝐹1 = 𝐹𝑐 ∩ 𝑀1 which is open in𝑀1. 
∴ 𝐹1is closed in𝑀1. 
Proof of the converse is similar. 

 
2.1.Closure. 

Definition: 

Let𝐴 be a subset of a metric space (𝑀, 𝑑). The closure of 𝐴, denoted by 𝐴 ̅is defined to be 
the intersection of all closed sets which contain 𝐴. 

i.e. 𝐴̅ =∩ {𝐵/𝐵 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑑 𝑖𝑛 𝑀 𝑎𝑛𝑑 𝐴 ⊆ 𝐵}. 
 

Note 
 

(1) Since intersection of closed sets is closed, 𝐴 ̅is closed set. 

(2) 𝐴 ̅  is the smallest closed set containing𝐴. 

(3) A is closed ⇔ A =𝐴.̅ 

 
Theorem 2.4: 
Let (𝑀, 𝑑) be a metric space. Let 𝐴, 𝐵 ⊆ 𝑀. Then 

(i)      𝐴 ⊆ 𝐵 ⇒ 𝐴  ⊆ 𝐵̅ 

(ii)                      A ∪ B   =  𝐴 ∪ 𝐵 

(iii)   𝐴 ∩ 𝐵    ⊆    𝐴 ∩ 𝐵 

   Proof: 

(i) Let  𝑨 ⊆ 𝑩, 

Now           B  ⊇ 𝐵 ⊇ 𝐴. 
Thus    𝐵    is a closed set containing 𝐴. 
But 𝐴 is the smallest closed set containing 𝐴. 
 

∴ 𝐴  ⊆ 𝐵. 

(ii)we have A ⊆ A ∪B. 

∴  A ⊆ A ∪B. (by (i)). 

 Similarly      ∴  B  ⊆ A ∪B.           
∴ 𝐴 ∪ 𝐵       ⊆   A ∪B                           (1)                                                              

 

Now   𝐴  is a closed set containing 𝐴 and    𝐵̅   is a closed set containing 𝐵. 

∴   𝐴   ∪   B     is a closed set containing 𝐴 ∪ 𝐵. 

But   𝐴   ∪   B       is the smallest closed set containing 𝐴 ∪ 𝐵. 

∴    𝐴 ∪ B  ⊆  𝐴   ∪   B             ( 2)                                     

 From (1) and (2) we get  

∴    𝐴 ∪ B       =     𝐴   ∪   B             
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( i i)  We know that  𝐴 ∩ 𝐵  ⊆  𝐴 

                         𝐴 ∩ 𝐵  ⊆  𝐴    (by (i)). 

Similarly        𝐴 ∩ 𝐵  ⊆   B           

∴     𝐴  ∩ 𝐵.    ⊆ 𝐴  ∩ 𝐵. 

 
Note:          
                                       𝐴  ∩ 𝐵     need not be equal to 𝐴  ∩ 𝐵. 

 
2.1 Limit Point 

 
Definition:  

Let (𝑀, 𝑑)be a Metric space.  Let 𝐴 ⊆ 𝑀.  Let 𝑥 ∈ 𝑀.  Then 𝑥 is called a limit point of 𝐴 

if every open ball with Centre 𝒙 contains at least one point of A differ from 𝑥. 
(𝑖. 𝑒) 𝐵(𝑥, 𝑟) ∩ (𝐴 − {𝑥}) ≠ 𝜙 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟 > 0.  

 

The set of all limit points of 𝐴 is called the derived set of 𝐴 and is denoted by 𝐷(𝐴) 

 
Theorem 2.4 

Let (𝑀, 𝑑) be a metric space and 𝐴 ⊆ 𝑀. Then 𝑥 is a limit point of 𝐴 if and only if every 
open ball with center 𝑥 contains infinite number of points of 𝐴. 

Proof : 
Let 𝒙 be a limit point of 𝑨. 
Suppose an open ball 𝑩(𝒙, 𝒓) contains only a finite number of points of 𝑨. 

 
𝑩(𝒙, 𝒓) ∩ (𝑨 − {𝒙}) = {𝒙𝟏, 𝒙𝟐, … . . , 𝒙𝒏} 

let 𝒓𝟏 = 𝒎𝒊𝒏{𝒅(𝒙, 𝒙𝒊)/𝒊 = 𝟏, 𝟐, … . , 𝒏}. 

Since 𝒙 ≠ 𝒙𝒊, 𝒅(𝒙, 𝒙𝒊) > 𝟎 𝒇𝒐𝒓 𝒂𝒍𝒍 𝒊 = 𝟏, 𝟐, … . , 𝒏 and hence 𝒓𝟏 > 𝟎. 
Also 𝑩(𝒙, 𝒓) ∩ (𝑨 − {𝒙}) = 𝝓. 
∴ 𝒙is not a limit point of A which is a contradiction. Hence every ball with center 𝒙 contains 
infinite number of points of 𝑨. 

The converse is obvious.   

 
Corollary 1: Any finite subset of a metric space has no limit points. 

 
Theorem 2.5 

Let 𝑴 be a metric space and 𝑨 ⊆ 𝑴. Then 𝑨  = 𝑨 ∪ 𝑫(𝑨). 

Proof:  Let  𝒙 ∈ 𝑨 ∪ 𝑫(𝑨).  we shall prove that 𝒙 ∈ 𝑨. 

Suppose   𝒙 ∉ 𝑨. 

∴ 𝒙 ∈ 𝑴 – 𝑨      and  since     𝑨         is closed 𝑴 − 𝑨     is open. 

∴ There exists an open ball 𝑩(𝒙, 𝒓) ⊆ 𝑴 – 𝑨 . 
∴ 𝑩(𝒙, 𝒓) ∩ 𝑨  =  𝝓. 
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∴  𝑩(𝒙, 𝒓) ∩ 𝑨 = 𝝓. (since 𝑨 ⊆ A )   
𝒙 ∉ 𝑨 ∪ 𝑫(𝑨)   which is a contradiction. 
∴ 𝒙 ∈ 𝑨. 
∴  𝑨 ∪ 𝑫(𝑨) ⊆ 𝑨 .  
Now  let 𝒙 ∈ 𝑨     
To prove 𝒙 ∈ 𝑨 ∪ 𝑫(𝑨).   
If 𝒙 ∈ 𝑨. 

clearly 𝒙 ∈ 𝑨 ∪ 𝑫(𝑨). 
Suppose 𝒙 ∉ 𝑨. We claim that 𝒙 ∈ 𝑫(𝑨). 

 
Suppose 𝒙 ∉ 𝑫(𝑨). Then there exists an open ball 𝑩(𝒙, 𝒓) such that 𝑩(𝒙, 𝒓) ∩ 𝑨 = 𝝓. 

 
∴ 𝑩(𝒙, 𝒓)𝒄 ⊇ 𝑨   and  𝑩(𝒙, 𝒓)𝒄 is closed. 

 
But 𝑨   is the smallest closed set containing A. 
∴ 𝑨   ⊆  𝑩(𝒙, 𝒓)𝒄. 
But  𝒙 ∈ 𝑨   and 𝒙 ∉ 𝑩(𝒙, 𝒓)𝒄 which is a contradiction. 
Hence 𝒙 ∈ 𝑫(𝑨). 
∴  𝒙 ∈ 𝑨 ∪ 𝑫(𝑨). 
∴ 𝑨  ⊆ 𝑨 ∪ 𝑫(𝑨) 
Hence ∴  𝑨 ∪ 𝑫(𝑨)   =  𝑨 

 

Corollary 1:   𝑨 is closed iff 𝑨 contains all its limit 
points.   (i.e.) 𝑨 is closed iff  𝑫(𝑨) ⊆ 𝑨. 
Proof:  𝑨 is closed ⇔ 𝑨 = 𝑨̅ (by theorem 2.13) 
⇔ 𝑨 = 𝑨 ∪ 𝑫(𝑨). 

 
⇔ 𝑫(𝑨) ⊆ 𝑨. 
Corollary 2: 𝒙 ∈ 𝑨̅ ⇔ 𝑩(𝒙, 𝒓) ∩ 𝑨 ≠ 𝝓for all𝒓 > 𝟎. 
Proof: let     𝒙 ∈ 𝑨̅,      then   𝒙 ∈ 𝑨 ∪ 𝑫(𝑨). 
∴ 𝒙 ∈ 𝑨 𝒐𝒓 𝒙 ∈ 𝑫(𝑨). 

 
If𝒙 ∈ 𝑨then 𝒙 ∈ 𝑩(𝒙, 𝒓) ∩ 𝑨. 

 
if𝒙 ∈ 𝑫(𝑨) then 𝑩(𝒙, 𝒓) ∩ 𝑨 ≠ 𝝓  for all 𝒓 > 𝟎. 
Hence in both cases 𝑩(𝒙, 𝒓) ∩ 𝑨 ≠ 𝝓 for all 𝒓 > 𝟎. 
Conversely Suppose 𝑩(𝒙, 𝒓) ∩ 𝑨 ≠ 𝝓 for all 𝒓 > 𝟎. 
We have to prove that, 𝒙 ∈ 𝑨 
If 𝒙 ∈ 𝑨  trivially 𝒙 ∈ 𝑨   

 
Let 𝒙 ∉ 𝑨. Then 𝑨 − {𝒙} = 𝑨. 

 
∴ 𝑩(𝒙, 𝒓) ∩ 𝑨 − {𝒙} ≠ 𝝓. 

 
∴ 𝒙 ∈ 𝑫(𝑨). 
∴  𝒙 ∈ 𝑨 
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Corollary 3: 

𝒙 ∈ 𝑨̅ ⇔ 𝑮 ∩ 𝑨 ≠ 𝝓 for every open set 𝑮containing 𝒙. 
Dense sets Proof: 

 Let 𝒙 ∈ 𝑨̅. 
Let 𝑮 be an open set containing 𝒙.then there exists 𝒓 > 𝟎 such that 𝑩(𝒙, 𝒓) ⊆ 𝑮. 
Also, since 𝒙 ∈ 𝑨̅ , 𝑩(𝒙, 𝒓) ∩ 𝑨 ≠ 𝝓. 
∴ 𝑮 ∩ 𝑨 ≠ 𝝓. 
Conversely suppose 𝑮 ∩ 𝑨 ≠ 𝝓 for every open set 𝑮containing 𝒙. 
Since 𝑩(𝒙, 𝒓)is an open set containing 𝒙,we have 𝑩(𝒙, 𝒓) ∩ 𝑨 ≠ 𝝓. 
∴  𝒙 ∈ 𝑨̅. 

Definition: 

A subset 𝑨 of a metric space 𝑴 is said to be dense in 𝑴 or every where dense if 𝑨  = 𝑴. 
 

Definition:  
           A metric space 𝑴 is said to be separable if there exists a countable dense  subset in 𝑴. 

Note : 
 

(1)  Any countable metric space is separable. 
(2)  Any uncountable discrete metric space is not separable. 

 
 

Theorem 2.6: 

Let 𝑴 be a metric space and 𝑨 ⊆ 𝑴.  Then the following are equivalent. 
(i) 𝑨  is dense in 𝑴. 
(ii) The only closed set which contains 𝑨  is 𝑴. 
(iii) The only open set disjoint from 𝑨  is 𝝓. 
(iv) 𝑨 intersects every non empty open set. 
(v) 𝑨  intersects every open ball. 

 
Proof: 

 
(i)⇒(ii).  
Suppose 𝑨  is dense in M. 
We claim that The only closed set which contains 𝑨  is 𝑴. 

 
Suppose 𝑨 is dense in 𝑴. 
Then 𝑨  = 𝑴.  - (1) 

 
Now, let 𝑭 ⊆ 𝑴 be closed set containing 𝑨. 
Since 𝑨   is a closed set containing 𝑨, we have  A ⊆ F. 
Hence 𝑴 ⊆ 𝑭.(by (1)) 
∴ 𝑴 = 𝑭. 

 
Hence,  the only closed set which contains 𝑨 is 𝑴. 
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(iii) ⇒(iii) 
Suppose the only closed set which contains A is 
M 
We claim that The only open set disjoint from 𝑨 
is 𝝓.  
 Suppose (iii) is not true. 

 
Then there exists a non empty  open set𝑩 such that,  𝑩 ∩ 𝑨 = 𝝓. 

 
∴ 𝑩𝒄    is  closed set and 𝑩𝒄 ⊇ 𝑨. 

 
Further, since 𝑩 ≠ 𝝓 we have 𝑩𝒄 ≠ 𝑴 which is a contradiction to (ii). 
Hence (ii) ⇒(iii). 
Obviously, (iii)⇒(iv). 

 
(iv)⇒(v),  since every open ball is an open set. 

 
(iv) ⇒(i) 

Suppose 𝑨 intersects every non empty open set. 
 
We claim that 𝑨  intersects every open ball 

 
Let 𝒙 ∈ 𝑴. Suppose every open ball 𝑩(𝒙, 𝒓)intersects 𝑨. 
Then by corollary,  𝒙 ∈ 𝑨̅. 
∴ 𝑴 ⊆ 𝑨       
But trivially  𝑨            ⊆ 𝑴. 
∴ 𝑨̅ = 𝑴. 

 
∴ 𝑨is dense in 𝑴. 

2.1. Completeness 
 

Definition: 
 let (𝑴, 𝒅) be a metric space. Let (𝒙𝒏 ) = 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏 , …  be a sequence of points in 

𝑴.  Let 𝒙 ∈ 𝑴.  We say that (𝒙𝒏) converges to 𝒙 if given 𝜺 >0 there exists a positive integer 𝒏𝟎 

such that 𝒅(𝒙𝒏, 𝒙) < 𝜺 for all 𝒏 ≥ 𝒏𝟎.  Also 𝒙 is called a limit of (𝒙𝒏). 

If (𝒙𝒏) converges to 𝒙 we write 𝐥𝐢𝐦 𝒙𝒏 = 𝒙 or (𝒙𝒏) → 𝒙. 
𝒏→∞ 

 

Note 1:  (𝒙𝒏) → 𝒙 iff for each open ball 𝑩(𝒙, 𝜺) with Centre 𝒙 there exists a positive integer 𝒏𝟎 

such that 𝒙𝒏 ∈ 𝑩(𝒙, 𝜺) for all 𝒏 ≥ 𝒏𝟎. 
 

Thus the open ball 𝑩(𝒙, 𝜺) contains all but a finite number of terms of the sequence. 
 

Note 2:(𝒙𝒏) → 𝒙 iff the sequence of real numbers 𝒅((𝒙𝒏, 𝒙)) → 𝟎. 
 

Theorem2.6: 
 

For a convergent sequence (𝒙𝒏) the limit is unique. 

Proof: Suppose (𝒙𝒏) → 𝒙 and (𝒙𝒏) → 𝒚. 
 

Let 𝜺 > 𝟎 be given. Then there exist positive integers 𝒏𝟏and 𝒏𝟐 such that  
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d (xn , x) < 𝜺 /2  for all n ≥ n1 and d (xn , y) < 𝜺 /2  for all n ≥ n2.  

Let for all 𝒎 be a positive integer such that for all 𝒎 ≥ 𝒏𝟏, 𝒏𝟐. 
Then  

𝒅(𝒙, 𝒚) ≤  𝒅(𝒙, 𝒙𝒎) + 𝒅(𝒙𝒎, 𝒚)  

 < 𝜺 /2  +  𝜺 /2    

= 𝜺 

∴ 𝒅(𝒙, 𝒚)       < 𝜺. 
 

Since 𝜺 > 𝟎 is arbitrary, 𝒅(𝒙, 𝒚) = 𝟎. 
 

∴ 𝒙 = 𝒚. 
 
Theorem 2.7 

Let 𝑴 be a metric space and 𝑨 ⊆ 𝑴. Then 

(i) 𝒙 ∈ 𝑨̅      iff there exists a sequence (𝒙𝒏) in 𝑨 such that (𝒙𝒏) → 𝒙. 

(ii) 𝒙 is a limit point of 𝑨 iff there exists a sequence (𝒙𝒏) of distinct points in 𝑨 such that 
(𝒙𝒏) → 𝒙. 

Proof: 

Let 𝒙 ∈ 𝑨 
Then, 𝒙 ∈ 𝑨 ∪ 𝑫(𝑨) (by the above  theorem) 

 
∴ 𝒙 ∈ 𝑨 or𝒙 ∈ 𝑫(𝑨) 

 

If 𝒙 ∈ 𝑨, then the constant sequence𝒙, 𝒙, … …. Is a sequence in 𝑨 converging to 𝒙. 
 

If 𝒙 ∈ 𝑫(𝑨) then the open ball 𝑩(𝒙, 𝟏/𝒏) contains infinite number of points of 𝑨 (by theorem) 
 

∴ We can choose 𝒙𝒏 ∈ 𝑩(𝒙, 𝟏/𝒏) ∩ 𝑨 such that 𝒙𝒏 ≠ 𝒙𝟏, 𝒙𝟐, … . , 𝒙𝒏−𝟏 for each 𝒏. 
 

∴ (𝒙𝒏 )is a sequence of distinct points in 𝑨. Also 𝒅(𝒙𝒏 , 𝒙) < 
𝟏  for all 𝒏. 
𝒏
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𝟏 

∴ 𝐥𝐢𝐦 𝒅(𝒙𝒏, 𝒙) = 𝟎. 
𝒙→∞ 

 

∴ (𝒙𝒏) → 𝒙. 

Conversely, suppose there exists a sequence (𝒙𝒏)in𝑨 such that (𝒙𝒏) → 𝒙. 
 

Then for any 𝒓 > 𝟎 there exists a positive integer 𝒏𝟎 such that 𝒅(𝒙𝒏, 𝒙) < 𝒓  for all 𝒏 ≥ 𝒏𝟎. 
 

∴ 𝒙𝒏 ∈ 𝑩(𝒙, 𝒓) for all 𝒏 ≥ 𝒏𝟎. 
 

∴ 𝑩(𝒙, 𝒓) ∩ 𝑨 ≠ 𝝓 
 

∴  𝒙 ∈ 𝑨̅. (by corollary 2) 

Further if (𝒙𝒏) is a sequence of distinct points, 𝑩(𝒙, 𝒓) ∩ 𝑨  is infinite. 
 

∴ 𝒙 ∈ 𝑫(𝑨). 
 

∴ 𝒙 is a limit point of 𝑨. 
 

Definition: Let (𝑴, 𝒅) be a metric space. let(𝒙𝒏) be a sequence of points in 𝑴.   (𝒙𝒏) is said to 
be a Cauchy sequence in 𝑴 if given 𝜺 > 𝟎 there exists a positive integer 𝒏𝟎 such that 𝒅(𝒙𝒎, 𝒙𝒏) 

<  𝜺 for all 𝒎, 𝒏 ≥ 𝒏𝟎. 

 
Theorem 2.7: 

 
Let (𝑴, 𝒅) be a metric space. Then any convergent sequence in M is a Cauchy sequence. 

 
Proof: 

 
Let (𝒙𝒏) be a convergent sequence of points in 𝑴 converging to 𝒙 ∈ 𝑴. 

Let 𝜺 > 𝟎 be given. 

Then there exists a positive integer 𝒏𝟎 such that (𝒙𝒏, 𝒙) < 
𝟐 

𝜺  for all 𝒏 ≥ 𝒏𝟎. 

Therefore, 𝒅(𝒙𝒏, 𝒙𝒎) ≤ 𝒅(𝒙𝒏, 𝒙) + 𝒅(𝒙, 𝒙𝒎) 

< 
𝟏 

𝜺 + 
𝟏 

𝜺   for all 𝒎, 𝒏 ≥ 𝒏0 
  

𝟐 𝟐  
 

= 𝜺for all 𝒎, 𝒏 ≥ 𝒏𝟎. 
 

∴ 𝒅(𝒙𝒏, 𝒙𝒎) < 𝜺. for all 𝒎, 𝒏 ≥ 𝒏𝟎. 

∴ (𝒙𝒏) is a convergent sequence. 
 

Note: 
       The converse of the above theorem is not true. 
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𝒏=𝟏 

Definition:  
A metric space 𝑴 is said to be complete if every Cauchy sequence in 𝑴 converges to a 

point in 𝑴. 

Theorem 2.8: (Canton’s Intersection Theorem) 
 

Let 𝑴 be a metric space. 𝑴is complete iff for every sequence (𝑭𝒏) of nonempty closed subsets 
of 𝑴 such that 

F𝟏 ⊇ 𝑭𝟐 ⊇ ⋯ ⊇ 𝑭𝒏 ⊇ ⋯and 𝒅((𝑭𝒏)) → 𝟎. ⋂n=1∞         𝑭𝒏    is nonempty. 
Proof: 

 
Let 𝑴 be a complete metric space. 

 
Let (𝑭𝒏) be a sequence of closed subsets of 𝑴 such that 

 
𝑭𝟏  ⊇ 𝑭𝟐  ⊇ ⋯ ⊇ 𝑭𝒏 ⊇ ⋯ ------------ (1) 

 
and 𝒅((𝑭𝒏)) → 𝟎. ------------------------------------ (2) 

 

we claim that . ⋂∞ 𝑭𝒏is nonempty. 
 

For each positive integer 𝒏, choose a point 𝒙𝒏 ∈ 𝑭𝒏. 

By (1), 𝒙𝒏, 𝒙𝒏+𝟏, 𝒙𝒏+𝟐, …. all lies in 𝑭𝒏. 

(i.e)  𝒙𝒎  ∈ 𝑭𝒏for all 𝒎 ≥ 𝒏 --------------------- (3) 

Since (𝒅(𝑭𝒏)) → 𝟎, given 𝜺 > 𝟎, there exists a positive integer 𝒏𝟎, such that 𝒅(𝑭𝒏) < 𝜺 for all 
𝒏 ≥ 𝒏𝟎. 

 

In particular 𝒅(𝑭𝒏𝟎 ) < 𝜺 ---------------- (4) 

∴ 𝒅(𝒙, 𝒚) < 𝜺for all 𝒙, 𝒚 ∈ 𝑭𝒏. 

Now,𝒙𝒎  ∈ 𝑭𝒏𝟎  for all 𝒎 ≥ 𝒏𝟎. (by(3)) 

∴ 𝒎, 𝒏 ≥ 𝒏𝟎 ⇒ 𝒙𝒎, 𝒙𝒏 ∈ 𝑭𝒏𝟎 . 

⇒ 𝒅(𝒙𝒎, 𝒙𝒏) < 𝜺. (by(4)) 
 

∴ (𝒙𝒏)is a Cauchy sequence in 𝑴. 

Since 𝑴 is complete there exists a point 𝒙 ∈ 𝑴 such that (𝒙𝒏) → 𝒙. 

We claim that 𝒙 ∈ ⋂𝒏=𝟏 𝑭𝒏. 

Now, for any  positive  integer  𝒏,  
                                                              𝒙𝒏, 𝒙𝒏+𝟏,  𝒙𝒏+𝟐, …. is a sequence in 𝑭𝒏 and this sequence 
converges to 𝒙. 

 

∴ 𝑥 ∈ 𝐹̅𝑛 (by theorem 3.2) 
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𝒏=𝟏 

𝑛=1 

 

But     𝐹𝑛  is closed and hence 𝐹̅𝑛  = 𝐹𝑛. 
 

∴ 𝑥 ∈ 𝐹𝑛. 

∴ 𝑥 ∈ ⋂∞      𝐹𝑛.  

Hence ⋂n=1∞𝐹𝑛 ≠ 𝜙.  

Conversely let,(𝒙𝒏)is a Cauchy sequence in𝑴. 

Let 𝐹1 = {𝑥1, 𝑥2, … … , 𝑥𝑛, … . } 

𝐹1 = {𝑥2, 𝑥3, … … , 𝑥𝑛, … . } 

 
…. ….. ….. …. …. …. ….. ….. …… 

 
…. …… …… ….. ……. …… ….. ….. 

 
𝐹𝑛 = {𝑥𝑛, 𝑥𝑛+1, 𝑥𝑛+2, … . } 

 
Clearly 𝐹1 ⊇ 𝐹2 ⊇ ⋯ ⊇ 𝐹𝑛 ⊇ ⋯ 

 
∴ 𝐹̅1  ⊇ ̅𝐹̅̅2  ⊇ ⋯ ⊇ 𝐹̅𝑛  ⊇ ⋯ 

 

∴ (𝐹̅𝑛)is a decreasing sequence of closed of closed sets. 

Now, since (𝒙𝒏) is a Cauchy sequence  given 𝜺 > 𝟎 there exists a positive integer 𝒏𝟎, such that 
𝒅(𝒙𝒎, 𝒙𝒏) < 𝜺 for all 𝒎, 𝒏 ≥ 𝒏𝟎. 

 
∴ For any integer 𝒏 ≥ 𝒏𝟎, the distance between any two points of 𝑭𝒏 is less than 𝜺. 

 
∴ 𝒅(𝑭𝒏) < 𝜺 for all 𝒏 ≥ 𝒏𝟎 

But 𝒅(𝑭𝒏) = 𝒅(̅𝑭̅̅𝒏̅). 

∴ 𝒅(̅𝑭̅̅  𝒏̅ ) < 𝜺  for all 𝒏 ≥ 𝒏𝟎  ---------------------------------- (5) 

(𝒅(̅𝑭̅̅𝒏̅   )) → 𝟎. 
 

Hence ⋂∞ ̅𝑭̅̅𝒏̅   is nonempty 

Let 𝒙 ∈ ⋂∞ ̅𝑭̅̅         𝒏̅.    Then 𝒙 and 𝒙𝒏 ∈ ̅𝑭̅̅𝒏̅ 
𝒏=𝟏 

 

∴ 𝒅(𝒙𝒏, 𝒙) ≤ 𝒅(̅𝑭̅̅𝒏̅  ). 

∴ 𝒅(𝒙𝒏, 𝒙) < 𝜀  for all 𝒏 ≥ 𝒏𝟎 (by(5)) 

∴ (𝑥𝑛) → 𝑥. 

∴ 𝑀is complete. 
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1

Definition:  

 A subset of a metric space 𝑀 is said to be nowhere dense in 𝑀  if 𝐼𝑛𝑡 𝐴 ̅= 𝜙. 

 

Definition:  

A subset of a metric space 𝑀 is said to be of first category in 𝑀 if 𝐴 can be expressed as 
a countable union of nowhere dense sets. 

A set which is not of first category is said to be of second category. 

  Remark: 

 Let M be a metric space and A⊆B. Then the following are equivalent. 

(i) A is nowhere dense in M. 

(ii) A does not contain any non – empty open set. 

(iii) Each non-empty open set has a non- empty open subset disjoint from A. 

(iv) Each non – empty open set has a non -empty open subset disjoint from A. 

(v) Each non – empty open set contains an open sphere disjoint form A. 
 

Theorem2.9: (Baire’s Category Theorem) 

Any complete metric space is of second category. 

Proof: Let 𝑀 be a complete metric space. 

Claim: 𝑀 is not of first category. 

Let (An) be a sequence of nowhere dense sets in M. 

Since M is open and 𝐴1 is nowhere dense,  there exists an open ball say 𝐵1 of radius less than 1 
such that 𝐵1 is disjoint from 𝐴1. (since by above remark ). 

Let 𝐹1 denote the concentric closed ball whose radius is 
2 

times that of 𝐵1. 

Now,   𝐼𝑛𝑡 𝐹1 is open and 𝐴2 is nowhere dense. 

∴Int F1 contains an open ball B2 of radius less than   1/2    such that B2 

is disjoint from A2.

Let 𝐹2 be a concentric closed ball whose radius is 

𝐴3 is nowhere dense. 

∴ Int F2 contains an open ball B2 of radius less than   1/2    such that B3 

is disjoint from A3.

 

Let 𝐹3 be a concentric closed ball whose radius is 1/2
 
times that of 𝐵3. 

Proceeding like this we get a sequence of nonempty closed balls 𝐹𝑛 such that  

𝐹1 ⊇ 𝐹2 ⊇ ⋯ ⊇𝐹n ⊇ ⋯    and 𝑑(𝐹n )    <  1/2n

Hence (𝑑(𝐹𝑛)) → 0as 𝑛 → ∞. 

Since 𝑀 is complete, by Cantor ’s  intersection theorem, there exists a point 𝑥 in 𝑀 such that 
∞ 
𝑛=1 𝐹𝑛. 𝑥 ∈ ⋂ 



Page 25 of 47 

 

 

𝑛=1 

Also each 𝐹𝑛 is disjoint from 𝐴𝑛. 

Hence, 𝑥 ∉ 𝐹𝑛 for all 𝑛 . 

∴ 𝑥 ∉ ⋃∞ 𝐴𝑛. 
∞ 
𝑛=1 𝐴𝑛 ≠ 𝑀. Hence 𝑀 is of second category. 

Corollary: 𝑅 is of second category. 

∴ ⋃ 
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UNIT - III 
 COUNTINUITY 

 
 

Definition:  

let(𝑀1, 𝑑1) and (𝑀2, 𝑑2) be metric spaces. 

Let 𝑓: 𝑀1 → 𝑀2 be a function. Let 𝑎 ∈ 𝑀1and 𝑙 ∈ 𝑀2. The function 𝑓 is said to have a limit as 
𝑥 → 𝑎 if given 𝜀 > 0, there exists 𝛿 > 0 such that, 

0 < 𝑑1(𝑥, 𝑎) < 𝛿 ⇒ 𝑑2(𝑓(𝑥), 𝑙) < 𝜀. 

We write lim 𝑓(𝑥) = 𝑙. 
𝑥→𝑎 

 
 

Definition :  

Let(𝑀1, 𝑑1) and (𝑀2, 𝑑2) be metric spaces. Let 𝑎 ∈ 𝑀1.A function  𝑓: 𝑀1 → 𝑀2  is said to 
be continuous at 𝑎 if given 𝜀 > 0, there exists 𝛿 > 0 such that, 

𝑑1(𝑥, 𝑎) < 𝛿 ⇒ 𝑑2(𝑓(𝑥), 𝑓(𝑎)) < 𝜀. 

𝑓is said to be continuous if its continuous at every point of 𝑀1. 

Note:1  

           𝑓 is continuous at 𝑎 iff lim 𝑓(𝑥) = 𝑓(𝑎). 
𝑥→𝑎 

Note:2 

            The condition 𝑑1(𝑥, 𝑎) < 𝛿 ⇒ 𝑑2(𝑓(𝑥), 𝑓(𝑎)) < 𝜀 can be rewritten as 

(i) 𝑥 ∈ 𝐵(𝑥, 𝛿) ⇒ 𝑓(𝑥) ∈ 𝐵(𝑓(𝑎), 𝜀) or 

(ii) 𝑓(𝐵(𝑎, 𝛿)) ⊆ 𝐵(𝑓(𝑎), 𝜀). 
 

Theorem 3.1: 

Let (𝑀1, 𝑑1) and (𝑀2, 𝑑2) be metric spaces. Let 𝑎 ∈ 𝑀1. A function 𝑓: 𝑀1 → 𝑀2  is 
continuous  at 𝑎 iff (𝑥𝑛) → 𝑎 ⇒ (𝑓(𝑥𝑛)) ⟶ 𝑓(𝑎). 
Proof: Suppose 𝑓 is continuous at 𝑎. 
Let (𝑥𝑛) be a sequence in 𝑀1 such that (𝑥𝑛) → 𝑎. 
Claim:(𝑓(𝑥𝑛)) ⟶ 𝑓(𝑎). 
Let 𝜀 > 0 be given. By definition of continuity, there exists 𝛿 > 0 such that, 
𝑑1(𝑥, 𝑎) < 𝛿 ⇒ 𝑑2(𝑓(𝑥), 𝑓(𝑎)) < 𝜀. -------------------- (1) 
Since (𝑥𝑛) → 𝑎, there exists a positive integer 𝑛0 such that 𝑑1(𝑥𝑛, 𝑎) < 𝛿 for all 𝑛 ≥ 𝑛0. 
∴ 𝑑2(𝑓(𝑥), 𝑓(𝑎)) <  𝜀for all 𝑛 ≥ 𝑛0. (by(1)) 
∴ (𝑓(𝑥𝑛)) ⟶ 𝑓(𝑎). 
Conversely, suppose (𝑥𝑛) → 𝑎 ⇒ (𝑓(𝑥𝑛)) ⟶ 𝑓(𝑎). 
Claim:𝑓 is continuous at 𝑎. 
Suppose 𝑓 is not continuous at 𝑎. Then there exists an 𝜀 > 0 such that for all 𝛿 > 0, 
𝑓(𝐵(𝑎, 𝛿)) ⊄ 𝐵(𝑓(𝑎), 𝜀) 
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In particular, 𝑓 (𝐵 (𝑎, 1)) ⊄ 𝐵(𝑓(𝑎), 𝜀). 
𝑛 

Choose 𝑥𝑛 such that 𝑥𝑛 ∈ 𝐵 (𝑎, 
1
)and (𝑥 

𝑛 

) ∉ 𝐵(𝑓(𝑎), 𝜀). 

∴ 𝑑1 (𝑥𝑛 , 𝑎) < 
1, and 𝑑 
𝑛 

(𝑓(𝑥), 𝑓(𝑎)) ≥ 𝜀. 

(𝑥𝑛) → 𝑎and(𝑓(𝑥𝑛)) not converges to 𝑓(𝑎) which is a contradiction to the hypothesis. 
Hence, 𝑓 is continuous at 𝑎. 
Corollary 1:A function 𝑓: 𝑀1 → 𝑀2 is continuous at 𝑎 iff (𝑥𝑛) → 𝑥 ⇒ (𝑓(𝑥𝑛)) ⟶ 𝑓(𝑥). 

 

Theorem 3.2: 

Let (𝑀1, 𝑑1) and (𝑀2, 𝑑2) be metric spaces. 𝑓: 𝑀1 → 𝑀2is continuous iff 𝑓−1(𝐺) is open in 𝑀1 

whenever 𝐺 is open in 𝑀2. 

(i.e) 𝑓 is continuous iff inverse image of every open set is open. 

Proof: 

Suppose 𝑓 is continuous 

Let 𝐺 be an open set in 𝑀2. 

Claim:𝑓−1(𝐺) is open in 𝑀2. 

If𝑓−1(𝐺) is empty, then it is open. Let 𝑓−1(𝐺) ≠ 𝜙. 

Let 𝑥 ∈ 𝑓−1(𝐺). Hence 𝑓(𝑥) ∈ 𝐺. 

Since 𝐺 is open, there exists an open ball 𝐵(𝑓(𝑥), 𝜀) such that 𝐵(𝑓(𝑥), 𝜀) ⊆ 𝐺. 

Now, by definition of continuity, there exists an open ball 𝐵(𝑥, 𝛿) such that 𝑓(𝐵(𝑥, 𝛿)) ⊆ 

𝐵(𝑓(𝑥), 𝜀). 

∴  𝑓(𝐵(𝑥, 𝛿)) ⊆ 𝐺 (by(1)) 

∴ 𝐵(𝑥, 𝛿) ⊆ 𝑓−1(𝐺) 

Since 𝑥 ∈ 𝑓−1(𝐺) is arbitrary, 𝑓−1(𝐺) is open. 

Conversely, suppose 𝑓−1(𝐺) is open in 𝑀1 whenever 𝐺 is open in 𝑀2. 

we claim that 𝑓 is continuous. 

Let 𝑥 ∈ 𝑀1. 

Now, 𝐵(𝑓(𝑥), 𝜀) is an open set in 𝑀2. 

∴ 𝑓−1(𝐵(𝑓(𝑥), 𝜀)is open in 𝑀1 and 𝑥 ∈  𝑓−1(𝐵(𝑓(𝑥), 𝜀). 

Therefore there exists 𝛿 > 0 such that 𝐵(𝑥, 𝛿) ⊆ 𝑓−1(𝐵(𝑓(𝑥), 𝜀). 

∴ 𝑓(𝐵(𝑥, 𝛿)) ⊆ (𝐵(𝑓(𝑥), 𝜀). 

∴ 𝑓is continuous at 𝑥. 

Since 𝑥 ∈ 𝑀1 is arbitrary 𝑓 is continuous. 

𝑛

2 
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Theorem 3.3: 

Let (𝑀1, 𝑑1) and (𝑀2, 𝑑2) be two metric spaces. A function 𝑓: 𝑀1 → 𝑀2 is continuous iff 
𝑓−1(𝐹) is closed in 𝑀1 whenever 𝐹 is closed in 𝑀2. 

Proof: Suppose 𝑓: 𝑀1 → 𝑀2 is continuous. 

Let 𝐹 ⊆ 𝑀2 be closed in 𝑀2. 

∴ 𝐹𝑐is open in 𝑀2. 

∴ 𝑓−1(𝐹𝑐)is open in 𝑀1. 

Conversely, suppose 𝑓−1(𝐹) is closed in 𝑀1 whenever 𝐹 is closed in 𝑀2. 

We claim that 𝑓 is continuous. 

Let 𝐺 be an open set in 𝑀2. 

∴ 𝐺𝑐is open in 𝑀2. 

∴ 𝑓−1(𝐺𝑐)is closed in 𝑀1. 

∴ [𝑓−1(𝐺)]𝑐  is closed in 𝑀1. 

∴ 𝑓−1(𝐺) is open in 𝑀1. 

∴ 𝑓is continuous. 
 
 

Theorem 3.4: 

Let (𝑀1, 𝑑1) and (𝑀2, 𝑑2) be two metric spaces. A function 𝑓: 𝑀1 → 𝑀2 is continuous iff 
𝑓(𝐴)̅ ⊆ ̅𝑓̅(̅̅𝐴̅)̅ for all 𝐴 ⊆ 𝑀1. 

Proof: 

Suppose 𝑓 is continuous. 

Let 𝐴 ⊆ 𝑀1. Then 𝑓(𝐴) ⊆ 𝑀2. 
Since 𝑓 is continuous, 𝑓−1(𝑓(A))  is closed in𝑀1     

Also 𝑓−1(𝑓(A)) ⊇ 𝐴   (since 𝑓  (A)  ⊇ 𝑓(𝐴)) 

But 𝐴 ̅is the smallest closed set containing 𝐴. 

∴ 𝐴̅ ⊆ 𝑓−1(𝑓(𝐴)) 

∴ 𝑓(𝐴)̅ ⊆ 𝑓(𝐴) 

Conversely, let 𝑓(𝐴)̅ ⊆ ̅𝑓̅(̅𝐴̅̅̅) for all 𝐴 ⊆ 𝑀1. 

To prove:𝑓 is continuous. 

We shall show that if 𝐹 is a closed set in 𝑀2, then 𝑓−1(𝐹) is closed in 𝑀1. 

By hypothesis, 𝑓( 𝑓 -1 (F) ) ⊆ 𝑓 𝑓 -1(F) 

                                                  ⊆ 𝐹. 



Page 29 of 47 

 

 

 

= 𝐹. ( since𝐹 is closed.) 

Thus 𝑓(𝑓−1(𝐹)) ⊆ 𝐹. 

∴ 𝑓
−1(𝐹) ⊆ 𝑓−1(𝐹) 

Also 𝑓−1(𝐹)  ⊆ 𝑓−1(𝐹). 

𝑓−1(𝐹) = 𝑓−1(𝐹)      

Hence 𝑓−1(𝐹) is closed. 

∴ 𝑓   is continuous. 
 
 

3.2 Homeomorphism 

Definition: Let  (𝑀1, 𝑑1) and (𝑀2, 𝑑2) be two metric spaces. A function 𝑓: 𝑀1  → 𝑀2  is called a 
homeomorphism if 

(i) 𝑓is 1-1 and onto. 

(ii) 𝑓is continuous. 

(iii) 𝑓−1is continuous. 

𝑀1and𝑀1 are said to be homeomorphic if there exists a homeomorphism𝑓: 𝑀1 → 𝑀2. 

Definition: A function 𝑓: 𝑀1 → 𝑀2 is said to be an open map if 𝑓(𝐺) is open in 𝑀2 for every 
open set 𝐺in 𝑀1. 

(i.e) 𝑓 is an open map if the image of an open set in 𝑀1 is an open set in 𝑀2. 

𝑓is called a closed map if 𝑓(𝐹) is closed in 𝑀2 for every closed set 𝐹 in 𝑀1. 

Note: Let𝑓: 𝑀1 → 𝑀2 be a 1-1 onto function. Then 𝑓−1 is continuous iff 𝑓 is an open map. 

For, 𝑓−1 is continuous iff for any open set 𝐺 in 𝑀1(𝑓−1)−1(𝐺) is open in 𝑀2. 

But, (𝑓−1)−1(𝐺) = 𝑓(𝐺). 

∴ 𝑓−1is continuous iff for every open set 𝐺 in 𝑀1, 𝑓(𝐺) is open in 𝑀2. 

∴ 𝑓−1is continuous iff 𝑓 is an open map. 

Note: Similarly 𝑓−1 is continuous iff 𝑓 is a closed map. 

Note: Let𝑓: 𝑀1 → 𝑀2 be a 1-1 onto map. Then the following are equivalent. 

(i) 𝑓is homeomorphism. 

(ii) 𝑓is continuous open map. 

(iii) 𝑓is continuous closed map. 

Proof: 

(i)⇔(ii) follows from Note1 and the definition of homeomorphism. 

(i))⇔(iii) follows from Note2 and the definition of homeomorphism. 

Note: Let 𝑓: 𝑀1 → 𝑀2 be a homeomorphism. 𝐺 ⊆ 𝑀1is open in 𝑀1 iff 𝑓(𝐺) is open in 𝑀2. 
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Note: Let𝑓: 𝑀1 → 𝑀2 be a 1-1 onto map. Then 𝑓 is a homeomorphism iff it satisfies the 
following condition. 

𝐹is closed in 𝑀1 iff 𝑓(𝐹) is closed in 𝑀2. 
 

3.3 Uniform Continuity 

Definition : Let(𝑀1, 𝑑1) and (𝑀2, 𝑑2) be two metric spaces. A function 𝑓: 𝑀1 → 𝑀2 is said to 
be uniformly continuous on 𝑀1 if given > 0 , there exists 𝛿 > 0 such that, 

𝑑1(𝑥, 𝑦) < 𝛿 ⇒ 𝑑2(𝑓(𝑥), 𝑓(𝑦)) < 𝜀. 
 

Problem 3.5: Prove that 𝑓: [0,1] ⟶ 𝑹 defined by 𝑓(𝑥) = 𝑥2 is uniformly continuous on [0,1]. 

Solution: 

Let 𝜀 > 0 be given. Let 𝑥, 𝑦 ∈ [0,1]. 

Then |𝑓(𝑥) − 𝑓(𝑦)| = |𝑥2 − 𝑦2| = |𝑥 + 𝑦||𝑥 − 𝑦| 

≤ 2|𝑥 − 𝑦| (since𝑥  ≤ 1 and 𝑦 ≤ 1) 

∴ |𝑥 − 𝑦| < 
1 

𝜀  ⇒ |𝑓(𝑥) − 𝑓(𝑦)| <  𝜀. 
2 

∴ 𝑓 is uniformly continuous on[0,1]. 
 

Problem 3.6: Prove that the function 𝑓: 𝑹 ⟶ 𝑹 defined by 𝑓(𝑥) = 𝑠𝑖𝑛 𝑥 is uniformly 
continuous on 𝑹. 

Solution: 

Let 𝑥, 𝑦 ∈ 𝑹and 𝑥 > 𝑦. 

𝑠𝑖𝑛 𝑥 − 𝑠𝑖𝑛𝑦  = (𝑥 − 𝑦)𝑐𝑜𝑠 𝑧where𝑥  > 𝑧 > 𝑦 (by mean value theorem) 

∴ |𝑠𝑖𝑛 𝑥 − 𝑠𝑖𝑛 𝑦| = |𝑥 − 𝑦||𝑐𝑜𝑠 𝑧| 

≤ |𝑥 − 𝑦| (since |𝑐𝑜𝑠 𝑧| ≤ 1). 

Hence for a given > 0 , we choose 𝛿 = 𝜀, we have |𝑥 − 𝑦| < 𝛿 ⟹ |𝑓(𝑥) − 𝑓(𝑦)| = 

|𝑠𝑖𝑛 𝑥 − 𝑠𝑖𝑛 𝑦| < 𝜀. 

∴ 𝑓(𝑥) = 𝑠𝑖𝑛 𝑥 is uniformly continuous on 𝑹. 
 
 

3.4 Discontinuous functions on r 

Definition: A function 𝑓: 𝑹 ⟶ 𝑹 is said to approach to a limit  𝑙 as 𝑥 tends to 𝑎 if given > 0 , 
there exists 𝛿 > 0 such that 

0 < |𝑥 − 𝑎| < 𝛿 ⇒ |𝑓(𝑥) − 𝑙| < 𝜀and we write lim 𝑓(𝑥) = 𝑙. 
𝑥→𝑎 

Definition: A function 𝑓 is that to have 𝑙 as the right limit at 𝑥 = 𝑎 if given 𝜀 > 0 , there exists 
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𝛿 > 0 such that 𝑎 < 𝑥 < 𝑎 + 𝛿 ⇒ |𝑓(𝑥) − 𝑙| < 𝜀 and we write lim 
𝑥→𝑎+ 

𝑓(𝑥) = 𝑙. 

Also we denote the right limit 𝑙by 𝑓(𝑎 +). 

A function 𝑓 is that to have 𝑙 as the left limit at 𝑥 = 𝑎 if given > 0 , there exists 𝛿 > 0 such 
that 𝑎 − 𝛿 < 𝑥 < 𝑎 ⇒ |𝑓(𝑥) − 𝑙| < 𝜀 and we write lim 

𝑥→𝑎− 
𝑓(𝑥) = 𝑙. 

Also we denote the right limit 𝑙 by 𝑓(𝑎 −). 

Note:lim 𝑓(𝑥) = 𝑙iff lim 𝑓(𝑥) = lim 𝑓(𝑥) = 𝑙. 
𝑥→𝑎 𝑥→𝑎+ 𝑥→𝑎− 

(i.e.) lim 𝑓(𝑥) exists iff the left and right limits of 𝑓(𝑥) at 𝑥 = 𝑎 exists and are equal. 
𝑥→𝑎 

Note: The definition of continuity of 𝑓 at 𝑥 = 𝑎 can be formulated as follows. 

𝑓is continuous at at 𝑎 iff 𝑓(𝑎 +) = 𝑓(𝑎 −) = 𝑓(𝑎). 

Note: If lim 𝑓(𝑥) does not exists then one of the following happens. 
𝑥→𝑎 

(i) lim 
𝑥→𝑎+ 

(ii) lim 
𝑥→𝑎− 

𝑓(𝑥)does not exists. 

𝑓(𝑥)does not exists. 

(iii) lim 
𝑥→𝑎− 

𝑓(𝑥)and lim 
𝑥→𝑎+ 

𝑓(𝑥) exist and are unequal. 

 
 

Definition: If a function f is discontinuous at 𝑎 then 𝑎 is called a point of discontinuity for the 
function. 

If 𝑎 is a point of discontinuity of a function then any one of the following cases arises. 

(i) lim 𝑓(𝑥)exists but is not equal to 𝑓(𝑎). 
𝑥→𝑎 

(ii) lim 
𝑥→𝑎− 

𝑓(𝑥)and lim 
𝑥→𝑎+ 

𝑓(𝑥) exist and are not equal. 

(iii) Either lim 
𝑥→𝑎− 

𝑓(𝑥) or lim 
𝑥→𝑎+ 

𝑓(𝑥) does not exist. 

 
 

Definition: let 𝑎 be a point of discontinuity for 𝑓(𝑥). 𝑎is said to be a point of discontinuity of 
the first kind if lim 

𝑥→𝑎− 
𝑓(𝑥) and lim 

𝑥→𝑎+ 
𝑓(𝑥) exist and both of them are finite and unequal. 

𝑎is said to be a point of discontinuity of the second kind  if either lim 
𝑥→𝑎− 

𝑓(𝑥) or lim 
𝑥→𝑎+ 

𝑓(𝑥) are 

does not exist. 
 
 

Definition:Let 𝐴 ⊆ 𝑅. Afunction 𝑓: 𝐴 → 𝑹 is called monotonic increasing if 𝑥, 𝑦 ∈ 𝐴and 𝑥 < 

𝑦 ⇒ 𝑓(𝑥) ≤ 𝑓(𝑦). 

𝑓 is called monotonic decreasing if 𝑥, 𝑦 ∈ 𝐴 and 𝑥 > 𝑦 ⇒ 𝑓(𝑥) ≥ 𝑓(𝑦). 

𝑓is called monotonic if it is either monotonic increasing or monotonic decreasing. 
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Theorem 3.7: 

Let 𝑓: [𝑎, 𝑏] → 𝑹be a monotonic increasing function. Then has a left limit and right limit at 
every point (a,b). Also 𝑓 has a right limit at a and𝑓 has a left limit at b. Further   x<y ⇒ 

𝑓(𝑥+) ≤ 𝑓(𝑦−). 

Similar result is true for monotonic decreasing function. 

Proof: 

Let 𝑓: [𝑎, 𝑏] → 𝑹 be a monotonic increasing function. 

Let x∈[a,b]. then { 𝑓(𝑡)/𝑎 ≤ 𝑡 < 𝑥} is bounded above by 𝑓(𝑥). 

Let 𝑙 = 𝑙. 𝑢. 𝑏{𝑓(𝑡)/𝑎 ≤ 𝑡 < 𝑥} 

Claim: 𝑓(𝑥−) = 𝑙 

Let 𝜀 > 0 be given .By definition 𝑙. 𝑢. 𝑏 there exists t such that 𝑎 ≤ 𝑡 < 𝑥 and 𝑙- −𝜀 < 𝑓(𝑡) ≤ 

𝑙 

Therefore 𝑡 < 𝑢 < 𝑥 ⇒ 𝑙 − 𝜀 < 𝑓(𝑡) ≤ 𝑓(𝑢) ≤ 𝑙 

(since f is monotonic increasing) 

⇒ 𝑙 − 𝜀 < 𝑓(𝑢) ≤ 𝑙 

∴ 𝒙 − 𝜹 < 𝒖 < 𝒙 ⇒ 𝒍 − 𝜺 < 𝒇(𝒖) ≤ 𝒍 where𝜹 = 𝒙 − 𝒕 

∴ 𝐟(𝐱−) = 𝐥 

Similarly we can prove that 𝒇(𝒙+) = 𝒈. 𝒍. 𝒃{𝒇(𝒕)/𝒙 < 𝒕 ≤ 𝒃} 

To Prove :𝒙 < 𝒚 ⇒ 𝒇(𝒙+) ≤ 𝒇(𝒚−) 

Let 𝒙 < 𝒚 

Now ,𝒇(𝒙+) = 𝒈. 𝒍. 𝒃{𝒇(𝒕)/𝒙 < 𝒕 ≤ 𝒃} 

= 𝒈. 𝒍. 𝒃{𝒇(𝒕)/𝒙 < 𝒕 ≤ 𝒚} 

(since𝒇 is monotonic increasing) 

Also, 𝒇(𝒚−) = 𝒍. 𝒖. 𝒃{𝒇(𝒕)/𝒂 ≤ 𝒕 < 𝒚} 

= 𝒍. 𝒖. 𝒃{𝒇(𝒕)/𝒙 ≤ 𝒕 < 𝒚} 

𝒇(𝒙+) ≤, 𝒇(𝒚−) 

The proof of monotonic decreasing function is similar. 
 
 
 

Theorem 3.8: 

Let𝒇: [𝒂, 𝒃] → 𝑹 be a monotonic function. Then the set of points of [a,b] at which 𝒇 is 
discontinuous is countable. 

Proof: 

Let E = {𝒙/𝒙 ∈ [𝒂, 𝒃] 𝒂𝒏𝒅 𝒇 is discontinuous at x} 
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Let 𝒙 ∈ 𝑬. then by previous theorem, 

𝒇(𝒙+)𝒂𝒏𝒅 𝒇(𝒙−) 𝒆𝒙𝒊𝒔𝒕𝒔 𝒂𝒏𝒅 𝒇(𝒙−) ≤ 𝒇(𝒙) ≤ 𝒇(𝒙+) 

If 𝒇(𝒙−) = 𝒇(𝒙+) then 𝒇(𝒙−) = 𝒇(𝒙) = 𝒇(𝒙+) 
 

∴ 𝒇is continuous at 𝒙 which is a contradiction. 

∴ 𝒇(𝒙−) ≠ 𝒇(𝒙+) 

∴ 𝒇(𝒙−) < 𝒇(𝒙+) 

Now choose a rational number 𝒓(𝒙) such that 𝒇(𝒙−) < 𝒓(𝒙) < 𝒇(𝒙+). 

This define a map 𝒓 from 𝑬 to 𝑸 which maps 𝒙 to r(𝒙). 

Claim: 𝒓 is 1-1 

Let 𝒙𝟏 < 𝒙𝟐 

∴ 𝒇(𝒙𝟏+) < 𝒇(𝒙𝟐 −) (by previous theorem) 

Also, 𝒇(𝒙𝟏−) < 𝒓(𝒙𝟏) = 𝒇(𝒙𝟏+) 

And 𝒇(𝒙𝟐−)  < 𝒓(𝒙𝟐) = 𝒇(𝒙𝟐+). 

∴ 𝒓(𝒙𝟏) < 𝒇(𝒙𝟐 +)< 𝒇(𝒙𝟐 −)< 𝒓(𝒙𝟐). 

Thus 𝒙𝟏 < 𝒙𝟐 ⇒ 𝒓(𝒙𝟏) < 𝒓(𝒙𝟐). 

Therefore,𝒓: 𝑬 → 𝑸 is 1-1.Hence 𝑬 is countable 
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UNIT - IV 
CONNECTEDNESS 

 

Definition: Let (𝑀, 𝑑) be a metric space. 𝑀is said to be connected if 𝑀 cannot be represented 
as the union of two disjoint nonempty open sets. 
If 𝑀 is not connected it is to be disconnected. 

 
Example: Let 𝑀 = [1,2] ∪ [3,4] with usual metric. Then 𝑀 is disconnected. 
Proof: 
[1,2]and[3,4] are open in 𝑀. 
Thus, 𝑀 is the union of two disjoint nonempty open dets namely [1,2]and [3,4]. 
Hence 𝑀 is disconnected. 

 
Theorem 4.1: 
Let (𝑀, 𝑑) be a metric space. Then the following are equivalent. 
𝑖) 𝑀 is connected. 
𝑖𝑖) 𝑀 cannot be written as the union of two disjoint nonempty closed sets. 
𝑖𝑖𝑖) 𝑀 cannot be written as the union of two nonempty sets 𝐴 and 𝐵 such that 𝐴 ∩ 𝐵̅ = 𝐴 ̅∩ 

𝐵 = 𝜙. 
𝑖𝑣) 𝑀 and 𝜙 are the only sets which are both open and closed in 𝑀. 
Proof: 
(i) ⇒(ii) 
Suppose (ii) is true. 
∴ 𝑀 = 𝐴 ∪ 𝐵where𝐴 and 𝐵 are closed 𝐴 ≠ 𝜙, 𝐵 ≠ 𝜙 and 𝐴 ∩ 𝐵 = 𝜙. 
∴ 𝐴𝑐 = 𝐵and 𝐵𝑐 = 𝐴. 
Since 𝐴 and 𝐵 are closed, 𝐴𝑐 and 𝐵𝑐 are open. 
∴ 𝐵and𝐴 are open. 
Thus 𝑀 is the union of two disjoint nonempty open sets. 
∴ 𝑀is not connected which is a contradiction. 
∴ (i)⇒(ii) 
(ii) ⇒(iii) 
Suppose (iii) is not true. 
Then 𝑀 = 𝐴 ∪ 𝐵 where 𝐴 ≠ 𝜙, 𝐵 ≠ 𝜙and 𝐴 ∩ 𝐵̅ = 𝐴 ̅∩ 𝐵 = 𝜙. 
Claim: 𝐴 and 𝐵 are closed. 
Let 𝑥 ∈ 𝐴.̅ 
∴ 𝑥 ∉ 𝐵 (since  𝐴 ̅∩ 𝐵  = 𝜙) 
∴ 𝑥 ∈ 𝐴 (since 𝐴 ∪ 𝐵  = 𝑀) 
𝐴 ̅⊆ 𝐴. 
But 𝐴 ⊆ 𝐴.̅ 
∴ 𝐴 = 𝐴a̅nd hence 𝐴 is closed. 
Similarly 𝐵 is closed. 
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Now, 𝐴 ∩ 𝐵  = 𝐴 ̅∩ 𝐵. (since 𝐴 = 𝐴)̅. 
= 𝜙. 

Thus 𝑀 = 𝐴 ∪ 𝐵where 𝐴 ≠ 𝜙, 𝐵 ≠ 𝜙, 𝐴 𝑎𝑛𝑑 𝐵 are closed and 𝐴 ∩ 𝐵 = 𝜙 which is 
contradiction to (ii). 
∴(ii)⇒(iii) 
(iii) ⇒(iv) 
Suppose (iv) is not true. 
Then there exists 𝐴 ⊆ 𝑀 such that 𝐴 ≠ 𝑀 such that 𝐴 ≠ 𝑀 and 𝐴 ≠ 𝜙 and 𝐴 is both open and 
closed. 
Let 𝐵 = 𝐴𝑐. 
Then 𝐵 is also both open and closed and 𝐵 ≠ 𝜙. 
Also 𝑀 = 𝐴 ∪ 𝐵. 
Further 𝐴 ̅∩ 𝐵  = 𝐴 ∩ 𝐴𝑐. (since𝐴 = 𝐴 ̅and 𝐴 = 𝐴𝑐) 

= 𝜙. 
Similarly 𝐴 ∩ 𝐵̅ = 𝜙. 
∴ 𝑀 = 𝐴 ∪ 𝐵where𝐴 ∩ 𝐵̅ = 𝜙 = 𝐴 ̅∩ 𝐵 which is a contradiction to (iii). 
∴(iii)⇒(iv). 
(iv) ⇒(i). 

Suppose 𝑀 is not connected. 
∴ 𝑀 = 𝐴 ∪ 𝐵 where𝐴 ≠ 𝜙, 𝐵 ≠ 𝜙, 𝐴 𝑎𝑛𝑑 𝐵 are open and 𝐴 ∩ 𝐵 = 𝜙. 
Then 𝐵𝑐 = 𝐴. 
Now, since 𝐵 is open 𝐴 is closed. 
Also 𝐴 ≠ 𝜙and 𝐴 ≠ 𝑀. (since 𝐵 ≠ 𝜙) 
∴ 𝐴is a proper non empty subset of 𝑀 which is both open and closed which is a contradiction to 
(iv). 
∴ (iv))⇒(i). 

 
Theorem 4.2 
A metric space 𝑀 is connected iff there does not exist a continuous function 𝑓 from 𝑀 onto the 
discrete metric space {0,1}. 
Proof: Suppose there exists a continuous function 𝑓 from 𝑀onto {0,1}. 
Since {0,1} is discrete,{0} and {1} are open. 
∴ 𝐴 = 𝑓−1({0})and𝐵 = 𝑓−1({1}) are open in 𝑀. 
Since 𝑓 is onto, 𝐴 and 𝐵 are non empty. 
Clearly 𝐴 ∩ 𝐵 = 𝜙and 𝐴 ∪ 𝐵 = 𝑀. 
Thus 𝑀 = 𝐴 ∪ 𝐵 where 𝐴 and 𝐵 are disjoint nonempty open sets. 
∴ 𝑀is not connected which is a contradiction. 
Hence there does not exist a continuous function from onto the discrete metric space {0,1}. 
Conversely, suppose 𝑀 is not connected. 
Then, there exists a disjoint nonempty open sets 𝐴 and 𝐵 in 𝑀 such that 𝑀 = 𝐴 ∪ 𝐵. 
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Now, define 𝑓: 𝑀  → {0,1} by 𝑓(𝑥) = {
0 𝑖𝑓 𝑥  ∈ 𝐴

 
1 𝑖𝑓 𝑥  ∈ 𝐵 

Clearly 𝑓 is onto. 
Also, 𝑓−1(𝜙) = 𝜙, 𝑓−1({0}) = 𝑎, 𝑓−1({1}) = 𝐵 𝑎𝑛𝑑 𝑓−1({0,1}) = 𝑀. 
Thus the inverse image of every open set in {0,1} is open in 𝑀. 
Hence 𝑓 is continuous. 
Thus there exists a continuous function 𝑓 from 𝑀 onto {0,1}.which is a contradiction. 
Hence 𝑀 is not connected. 

 
Problem 4.3: 
Let 𝑀 be a metric space. Let 𝐴 be a connected subset of 𝑀. If 𝐵 is a subset of of 𝑀 such that 
𝐴 ⊆ 𝐵 ⊆ 𝐴 ̅then 𝐵 is connected. In particular 𝐴 ̅is connected. 
Solution: Suppose 𝐵 is not connected. 
Then 𝐵 = 𝐵1 ∪ 𝐵2 where 𝐵1 ≠ 𝜙, 𝐵2 ≠ 𝜙, 𝐵1 ∩ 𝐵2 = 𝜙 and 𝐵1 and 𝐵2 are open in 𝐵. 
Now, since 𝐵1 and 𝐵2 are open sets in 𝐵 there exists open sets 𝐺1 and 𝐺2 in 𝑀 such that 𝐵1 = 

𝐺1 ∩ 𝐵 𝑎𝑛𝑑 𝐵2 = 𝐺2 ∩ 𝐵. 
∴ 𝐵 = 𝐵1 ∪ 𝐵2 = (𝐺1 ∩ 𝐵) ∪ (𝐺2 ∩ 𝐵) = (𝐺1 ∪ 𝐺2) ∩ 𝐵. 
∴ 𝐵 ⊆ 𝐺1 ∪ 𝐺2. 
∴ 𝐴 ⊆ 𝐺1  ∪ 𝐺2 (since 𝐴 ⊆ 𝐵) 
∴ 𝐴 = (𝐺1 ∪ 𝐺2) ∩ 𝐴. 
= (𝐺1 ∩ 𝐴) ∪= (𝐺1 ∩ 𝐴). 
Now, 𝐺1 ∩ 𝐴 and 𝐺2 ∩ 𝐴 are open in 𝐴.  
Further, (𝐺1 ∩ 𝐴) ∪ (𝐺2 ∩ 𝐴) = (𝐺1 ∪ 𝐺2) ∩ 𝐴. 
= (𝐺1 ∪ 𝐺2) ∩ 𝐵 (since 𝐴 ⊆ 𝐵) 
= (𝐺1 ∩ 𝐵) ∩ (𝐺2 ∩ 𝐵) 

= 𝐵1 ∩ 𝐵2. 
= 𝜙. 
∴ (𝐺1 ∩ 𝐴) ∪ (𝐺2 ∩ 𝐴) = 𝜙. 
Now, since 𝐴 is connected, either 𝐺1 ∩ 𝐴 = 𝜙 𝑜𝑟 𝐺2 ∩ 𝐴 = 𝜙. 
Without loss of generality let us assume that 𝐺1 ∩ 𝐴 = 𝜙. 
Since 𝐺1 is open in 𝑀, we have 𝐺1 ∩ 𝐴 ̅= 𝜙. 
∴ 𝐺1 ∩ 𝐵  = 𝜙. (since 𝐵 ⊆ 𝐴)̅ 
∴ 𝐵1 = 𝜙which is a contradiction. 
Hence 𝐵 is not connected. 

 
4.2 Connected Subsets of 𝑹 

Theorem 4.4: 
A subspace of 𝑹 is connected iff it is an interval. 
Proof: 
Let 𝐴 be a connected subset of 𝑹. 
Suppose𝐴 is not an interval. 
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Then there exists 𝑎, 𝑏, 𝑐 ∈ 𝑹such that, 𝑎 < 𝑏 < 𝑐 and 𝑎, 𝑐 ∈ 𝐴but 𝑏 ∉ 𝐴. 
Let 𝐴1 = (−∞, 𝑏) ∩ 𝐴and 𝐴2 = (𝑏, ∞) ∩ 𝐴. 
Since (−∞, 𝑏) and (𝑏, ∞) are open in 𝑹, 𝐴1 and 𝐴2 are open sets in 𝐴. 
Also, 𝐴1 ∩ 𝐴2 = 𝜙and 𝐴1 ∪ 𝐴2 = 𝐴. 
Further 𝑎 ∈ 𝐴1and 𝑐 ∈ 𝐴2. 
Hence 𝐴1 ≠ 𝜙and 𝐴2 ≠ 𝜙. 
Thus 𝐴 is the union of two disjoint nonempty open sets 𝐴1and 𝐴2. 
Hence 𝐴 is not connected which is a contradiction. 
Hence 𝐴 is an interval. 
Conversely, let 𝐴 be an interval. 
Claim:𝐴 is connected. 
Suppose 𝐴 is not connected. 
Let 𝐴 = 𝐴1 ∪ 𝐴2 where 𝐴1 ≠ 𝜙, 𝐴2 ≠ 𝜙, 𝐴1 ∩ 𝐴2 = 𝜙 and 𝐴1 and 𝐴2 are closed in 𝐴. 
Choose 𝑥 ∈ 𝐴1and 𝑧 ∈ 𝐴2. 
Since 𝐴1 ∩ 𝐴2 = 𝜙 we have 𝑥 ≠ 𝑧. 
Without loss of generality let us assume that 𝑥 < 𝑧. 
Now, since 𝐴 is an interval we have [𝑥, 𝑧] ⊆ 𝐴. 
(i.e) [𝑥, 𝑧] ⊆ 𝐴1 ∪ 𝐴2. 
∴ Every element of [𝑥, 𝑧] is either in 𝐴1 or in 𝐴2. 
Now, let 𝑦 = 𝑙. 𝑢. 𝑏. {[𝑥, 𝑧] ∩ 𝐴1}. 
Clearly 𝑥 ≤ 𝑦 ≤ 𝑧. 
Hence 𝑦 ∈ 𝐴. 
Let 𝜀 > 0 be given. Then by the definition of 𝑙. 𝑢. 𝑏. there exists 𝑡 ∈ [𝑥, 𝑧] ∩ 𝐴1 such that 𝑦 − 

𝜀 < 𝑡 ≤ 𝑦. 
∴ (𝑦 − 𝜀, 𝑦 + 𝜀) ∩ ( [𝑥, 𝑧] ∩ 𝐴1) ≠ 𝜙. 
 

∴ 𝑦 ∈  [𝑥, 𝑧] ∩ 𝐴1  

∴ 𝑦 ∈ [𝑥, 𝑧] ∩ 𝐴1 

∴ 𝑦 ∈ 𝐴1. 
Again by the definition of 𝑦, 𝑦 + 𝜀 ∈ 𝐴2 for all 𝜀 > 0 such that 𝑦 + 𝜀 ≤ 𝑧. 
∴ 𝑦 ∈ ̅𝐴̅2

̅ 

∴ 𝑦 ∈ 𝐴2 (since𝐴2 is closed) 
∴ 𝑦 ∈ 𝐴1 ∩ 𝐴2 [ by(1) and (2) ] which is a contradiction since 𝐴1 ∩ 𝐴2 = 𝜙.  
Hence 𝐴 is connected. 

 
Theorem 4.5: 
𝑹 is connected. 
Proof:𝑹 = (−∞, ∞) is an interval. 
∴ 𝑹is connected. 
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4.3 Connectedness and Continuity Theorem 4.6: 

 Let 𝑀1 be a connected metric space. Let 𝑀2 be any metric space. Let 𝑓: 𝑀1 → 𝑀2 be a 
continuous function. Then 𝑓(𝑀1) is a connected subset of 𝑀2. 
(i.e) Any continuous image of a connected set is connected. 
Proof: 
Let 𝑓(𝑀1) = 𝐴 so that 𝑓 is function on 𝑀1onto 𝐴. 
Claim:𝐴 is connected. 
Suppose 𝐴 is not connected. Then there exists a proper non empty subset of 𝐵 of 𝐴 which is 
both open and closed in 𝐴. 
∴ 𝑓−1(𝐵)is a proper nonempty subset of 𝑀1 which is both open and closed in 𝑀1. 
Hence 𝑀1 is not connected which is contradiction. 
Hence 𝐴 is connected. 
Theorem 4.7:    Intermediate value theorem 

Let 𝑓 be a real valued continuous function defined on an interval 𝐼. Then 𝑓 takes every 
value between any two values it assumes 

Proof: 
Let 𝑎, 𝑏 ∈ 𝐼and 𝑓(𝑎) ≠ 𝑓(𝑏). 
Without loss of generality we assume that 𝑓(𝑎) < 𝑓(𝑏). 
Let c be such that 𝑓(𝑎) < 𝑐 < 𝑓(𝑏). 
The interval 𝐼 is a connected subset of 𝑹. 
∴ 𝑓(𝐼)is a connected subset of 𝑹. (by theorem 4.6) 
∴ 𝑓(𝐼)is an interval. (by theorem 4.6) 
Also 𝑓(𝑎), 𝑓(𝑏) ∈ 𝑓(𝐼). Hence [𝑓(𝑎), 𝑓(𝑏)] ⊆ 𝑓(𝐼). 
∴ 𝑐 ∈ 𝑓(𝐼) (since 𝑓(𝑎) < 𝑐 < 𝑓(𝑏)) 
∴ 𝑐 = 𝑓(𝑥)for some 𝑥 ∈ 𝐼. 

 
4.2 Compact Metric Spaces 
Definition: Let 𝑀 be a metric space. A family of open sets {𝐺𝛼} in 𝑀 is called an open cover for 
𝑀if ∪ 𝐺𝛼 = 𝑀. 
A subfamily of {𝐺𝛼} which itself is an open cover is called a subcover. 
A metric space 𝑀 is said to be compact if every open cover for 𝑀 has finite subcover. 
(i.e) for each family of open sets {𝐺𝛼} such that ∪ 𝐺𝛼 = 𝑀, there exists a finite subfamily 
{𝐺𝛼 , 𝐺𝛼 , … … . , 𝐺𝛼 } such that ⋃𝑛 𝐺𝛼 = 𝑀. 

1 2 𝑛 𝑖=1 𝑖 

 

Theorem 4.8: 
Let 𝑀 be a metric space. Let 𝐴 ⊆ 𝑀. 𝐴is compact iff given a family of open sets {𝐺𝛼} in 𝑀 such 
that ∪ 𝐺𝛼 ⊇ 𝐴 there exists a subfamily 
𝐺𝛼 , 𝐺𝛼 , … … . , 𝐺𝛼 such that ⋃𝑛 𝐺𝛼 ⊆ 𝐴. 

1 2 𝑛 𝑖=1 𝑖 

 

Proof: 
Let 𝐴 be a compact subset of 𝑀. 
Let {𝐺𝛼} be a family of open sets in 𝑀 such that ∪ 𝐺𝛼 ⊇ 𝐴. 
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𝑖=1 

 

Then (∪ 𝐺𝛼) ∩ 𝐴 = 𝐴. 
∴∪ (𝐺𝛼 ∩ 𝐴) = 𝐴. 
Also 𝐺𝛼 ∩ 𝐴 is open in 𝐴. 
∴ The family {𝐺𝛼 ∩ 𝐴} is an open cover for 𝐴. 
Since 𝐴 is compact this open cover has a finite subcover, say, 𝐺𝛼1 ∩ 𝐴, 𝐺𝛼2 ∩ 𝐴, … … . , 𝐺𝛼𝑛 ∩ 𝐴. 

𝑛 
𝑖=1 (𝐺𝛼𝑖

 ∩ 𝐴) = 𝐴. 
𝑛 
𝑖=1 𝐺𝛼

𝑖 
) ∩ 𝐴 = 𝐴. 

𝑛 
𝑖=1 𝐺𝛼𝑖

 ⊆ 𝐴. 
Conversely let {𝐻𝛼} be an open cover for 𝐴. 
∴ Each 𝐻𝛼 is open in 𝐴. 
∴ 𝐻𝛼 = 𝐺𝛼 ∩ 𝐴where𝐺𝛼 is open in 𝑀. 
Now, ∪ 𝐻𝛼 = 𝐴. 
∴∪ (𝐺𝛼 ∩ 𝐴) = 𝐴. 
∴ (∪ 𝐺𝛼) ∩ 𝐴 = 𝐴. 
∴∪ 𝐺𝛼 ⊇ 𝐴. 
Hence by hypothesis there exists a finite subfamily 𝐺𝛼 , 𝐺𝛼 , … … . , 𝐺𝛼 

 
 
 
 
 
 

 
such that ⋃𝑛 

 
 
 
 
 
 
 
 

𝐺𝛼 

 
 
 
 
 
 
 

 
⊆ 𝐴. 

 
𝑛 
𝑖=1 𝐺𝛼𝑖 

) ∩ 𝐴 = 𝐴. 
1 2 𝑛 𝑖=1 𝑖 

𝑛 
𝑖=1 
𝑛 
𝑖=1 

(𝐺𝛼
𝑖
 

𝐻𝛼𝑖
 

∩ 𝐴) = 𝐴. 
= 𝐴. 

Thus {𝐻𝛼1 , 𝐻𝛼2 , … … . , 𝐻𝛼𝑛} is a finite subcover of the open cover {𝐻𝛼}. 
∴ 𝐴is compact. 

 
Theorem 4.9: 
Any compact subset 𝐴 of a metric space 𝑀 is bounded. 
Proof: 
Let 𝑥0 ∈ 𝐴. 
Consider {𝐵(𝑥0, 𝑛)|𝑛 ∈ 𝑁}. 
Clearly ⋃𝑛 𝐵(𝑥0, 𝑛) = 𝑀. 

𝑛 
𝑖=1 𝐵(𝑥0, 𝑛) ⊇ 𝐴. 

∴ ⋃ 

∴ (⋃ 

∴ ⋃ 

∴ (⋃ 

∴ ⋃ 

∴ ⋃ 

∴ ⋃ 
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𝑖=1 

𝑖=1 

1

1 

1 2 𝑛 

𝑖 

Since 𝐴 is compact there exists a finite subfamily say, 𝐵(𝑥0, 𝑛1), 𝐵(𝑥0, 𝑛2), … … … , 𝐵(𝑥0, 𝑛𝑘) 

such that ⋃𝑘 𝐵(𝑥0, 𝑛1) ⊇ 𝐴. 
Let 𝑛0 = max{𝑛1, 𝑛2, … … . , 𝑛𝑘}. 
Then ⋃𝑘 𝐵(𝑥0, 𝑛𝑖) = 𝐵(𝑥0, 𝑛0). 
∴ 𝐵(𝑥0, 𝑛0) ⊇ 𝐴. 
We know that 𝐵(𝑥0, 𝑛0) is a bounded set and a subset of a bounded set is bounded. 
Hence 𝐴 is bounded. 

 
Theorem 4.10: 
Any compact subset 𝐴 of a metric space (𝑀, 𝑑) is closed. 
Proof: 
To prove:𝐴 is closed. We shall prove that 𝐴𝑐 is open. 

Let 𝑦 ∈ 𝐴𝑐 and let 𝑥 ∈ 𝐴. Then 𝑥 ≠ 𝑦. 
∴ 𝑑(𝑥, 𝑦) = 𝑟𝑥 > 0. 

1 1 

It can be easily verified that 𝐵 (𝑥, 
2 

𝑟𝑥) ∩ 𝐵 (𝑦, 
2 

𝑟𝑥) = 𝜙. 

Now consider the collection {𝐵 (𝑥, 
2 

𝑟𝑥) /𝑥 ∈ 𝐴}. 

Clearly ⋃𝑥∈𝐴 𝐵 (𝑥, 
2 

𝑟𝑥) ⊇ 𝐴. 

Since 𝐴 is compact there exists a finite number of such open balls say, 
𝐵 (𝑥 , 

1 
𝑟 

 

) , … . . , 𝐵(𝑥 , 
1 

𝑟 
 

) such that ⋃𝑛 𝐵(𝑥 , 
1 

𝑟 
 

) ⊇ 𝐴. ----------- (1) 
1 2 𝑥1 𝑛 2 𝑥𝑛 𝑖=1 𝑖 2 𝑥𝑖 

Now, let 𝑉 = ⋂𝑛 𝐵 (𝑦, 
1 

𝑟 ). 
 

𝑦 𝑖=1 2 𝑥 

Clearly 𝑉𝑦 is an open set containing 𝑦. 
1 1 1 

Since 𝐵 (𝑦, 
2 

𝑟𝑦) ∩ (𝑥, 
2 

𝑟𝑥) = 𝜙, we have 𝑉𝑦 ∩ 𝐵(𝑥, 
2 

𝑟𝑥𝑖 
) = 𝜙 for each 𝑖 = 1,2, … … . , 𝑛. 

∴ 𝑉 ∩ [⋃𝑛 𝐵(𝑥, 
1 

𝑟 
 

)] = 𝜙. 
𝑦 𝑖=1 2 𝑥𝑖 

∴ 𝑉𝑦   ∩ 𝐴 = 𝜙. (by (1)). 
∴ 𝑉𝑦 ⊆ 𝐴𝑐. 
∴ ⋃𝑦∈𝐴𝑐 𝑉𝑦 = 𝐴𝑐and each 𝑉𝑦 is open. 
∴ 𝐴𝑐is open. Hence 𝐴 is closed. 

 
Theorem 4.11: 
A closed subspace of a compact metric space is compact. 
Proof: 
Let 𝑀 be a compact metric space. 
Let 𝐴 be a nonempty closed subset of 𝑀. 
Claim:𝐴 is compact. 
Let {𝐺𝛼/ 𝛼 ∈ 𝐼} be a family of open sets in 𝑀 such that, ⋃𝛼∈𝐼 𝐺𝛼 ⊇ 𝐴. 
∴ 𝐴𝑐 ∪ [⋃𝛼∈𝐼 𝐺𝛼] = 𝑀. 
Also 𝐴𝑐 is open. (since𝐴 is closed). 
∴ {𝐺𝛼/𝛼 ∈ 𝐼} ∪ {𝐴𝑐}is an open cover for 𝑀. 
Since 𝑀 is compact it has a finite subcover say, 𝐺𝛼 , 𝐺𝛼 , … … . , 𝐺𝛼 , 𝐴𝑐. 

𝑛 
𝑖=1 𝐺𝛼 ) ∪ 𝐴𝑐 = 𝑀. 

𝑛 
𝑖=1 𝐺𝛼

𝑖
 ⊇ 𝐴. 

∴ (⋃ 

∴ ⋃ 
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𝛼 

∴ 𝐴is compact. 
 

4.3 Compact Subsets of𝑹. 
Theorem 4.12: Heine-Borel Theorem 
Any closed interval [𝑎, 𝑏] is a compact subset of 𝑹. 
Proof: 
Let {𝐺𝛼/ 𝛼 ∈ 𝐼} be a family of open sets in 𝑹 such that ⋃𝛼∈𝐼 𝐺𝛼 ⊇ [𝑎, 𝑏]. 
Let 𝑆 = {𝑥|𝑥 ∈ [𝑎, 𝑏] 𝑎𝑛𝑑 [𝑎, 𝑥]𝑐𝑎𝑛 𝑏𝑒 𝑐𝑜𝑣𝑟𝑒𝑑 𝑏𝑦 𝑎 𝑓𝑖𝑛𝑖𝑡𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐺′ 𝑠}. 

 

Clearly 𝑎 ∈ 𝑆 and hence 𝑆 ≠ 𝜙. 
Also 𝑆 is bounded above by 𝑏. 

Let 𝑐 denote the 𝑙. 𝑢. 𝑏.of 𝑆. 
Clearly 𝑐 ∈ [𝑎, 𝑏]. 
∴ 𝑐 ∈ 𝐺𝛼1 for some 𝛼1 ∈ 𝐼. 
Since 𝐺𝛼1 is open, there exists 𝜀 > 0 such that (𝑐 − 𝜀, 𝑐 + 𝜀) ⊆ 𝐺𝛼1 . 
Choose 𝑥1 ∈ [𝑎, 𝑏] such that 𝑥1 < 𝑐and [𝑥1, 𝑐] ⊆ 𝐺𝛼1 . 
Now, since 𝑥1 < 𝑐, [𝑎, 𝑥1] can be covered by a finite number of 𝐺 𝛼′𝑠. 
These finite number of 𝐺 𝛼′𝑠 together with 𝐺𝛼1 

covers [𝑎, 𝑐]. 
∴ By definition of 𝑆, 𝑐 ∈ 𝑆. 
Now, we claim that 𝑐 = 𝑏. 
Suppose 𝑐 ≠ 𝑏. 
Then choose 𝑥2 ∈ [𝑎, 𝑏] such that 𝑥2 > 𝑐and [𝑐, 𝑥2] ⊆ 𝐺𝛼1 . 
As before,[𝑎, 𝑥2] can be covered by a finite number of 𝐺 𝛼′𝑠. 
Hence 𝑥2 ∈ 𝑆. 
But 𝑥2 > 𝑐 which is a contradiction, since 𝑐 is the 𝑙. 𝑢. 𝑏.of 𝑆. 
∴ 𝑐 = 𝑏. 
∴ [𝑎, 𝑏]can be covered by a finite number of 𝐺 𝛼′𝑠. 
∴ [𝑎, 𝑏]is a compact subset of 𝑹. 

 
Theorem 4.13: 
Asubset of 𝑹 is compact iff 𝐴 is closed and bounded. 
Proof: 
If 𝐴 is compact then 𝐴 is closed and bounded. 
Conversely, let 𝐴 be a subset of 𝑹 which is closed and bounded. 
Since 𝐴 is bounded we can find a closed interval [𝑎, 𝑏] such that 𝐴 ⊆ [𝑎, 𝑏]. 
Since 𝐴 is closed in 𝑹, 𝐴 is closed in [𝑎, 𝑏] also. 
Thus 𝐴 is a closed subset of the compact space [𝑎, 𝑏]. 
Hence 𝐴 is compact. (by theorem 4.11) 
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𝑛=1 

lim 

 

UNIT - V 
RIEMAN INTEGRAL 

 

If 𝐼 is the integral of real number, the length of 𝐼 is denoted by |𝐼|. 
Set of measure Zero: 
A subset 𝐸 ⊂ 𝑅 is said to be a measure Zero if for each 𝜀 > 0, there exists a finite (or) 
countable number of open intervals, 𝐼1, 𝐼2, ............ such that 𝐸 ⊂ ⋃∞ 𝐼𝑛. 
∑∞ |𝐼𝑛| < 𝜀. 

𝑛=1 

Derivatives: 
Let 𝑓 be a real valued function defined on an Interval [𝑎, 𝑏] ⊆ 𝑅. It is derivable at an interior 
point 𝑐 ∈ (𝑎, 𝑏). 

𝑓(𝑥)−𝑓(𝑐) 
(i) If lim 

𝑥→𝑐 

 

𝑥−𝑐 
exists. 

 𝑓(𝑐+ℎ)−𝑓(𝑐) 
exists. 

ℎ→0 ℎ 

 
(ii) lim 

𝑥→𝑐 

(iii) lim 
𝑥→𝑐 

Where 𝑥 = 𝑐 + ℎ → 𝑥 − 𝑐 = ℎ. 
𝑓(𝑥)−𝑓(𝑐) 

is called the left hand derivative = 𝐿𝑓′(𝑐). 
𝑥−𝑐 

𝑓(𝑥)−𝑓(𝑐) 
is called the right hand derivative = 𝑅𝑓′(𝑐) 

𝑥−𝑐 

(iv) If 𝑓′(𝑐) = 𝐿𝑓′(𝑐) = 𝑅𝑓′(𝑐) then we say 𝑓(𝑥)is derivable. 

(v) 𝑓′(𝑎) = lim 
𝑥→𝑎+ 

(vi) 𝑓′(𝑏) = lim 

𝑓(𝑥)−𝑓(𝑎) 
. 

𝑥−𝑎 
𝑓(𝑥)−𝑓(𝑏) 

. 
𝑥→𝑏− 𝑥−𝑏 

 

Example 1: 
Show that the function 𝑓(𝑥) = 𝑥2 is derivable in [0,1]. 
Solution: 
(i) Let 𝑥0 ∈ (0,1) 

𝑓′(𝑥 ) = lim
 𝑓(𝑥)−𝑓(𝑥0). 0 

𝑥→𝑥0 𝑥−𝑥0 

=   lim 
𝑥2−𝑥0

2

. 
𝑥→𝑥0 𝑥−𝑥0 

= lim
 (𝑥+𝑥0)(𝑥−𝑥0) 

𝑥→𝑥0 𝑥−𝑥0 

= lim (𝑥 + 𝑥0) = 𝑥0 + 𝑥0 = 2𝑥0. 
𝑥→𝑥0 

∴derivable exists an interior point. 
(ii) 𝑓′(0) = lim 

𝑓(𝑥)−𝑓(0). 
𝑥→0+ 𝑥−0 

= lim 

 
𝑥2−0 

. 
𝑥→0+ 𝑥−0 

= lim 𝑥2 
. 

𝑥→0+ 𝑥 

 

∴ 𝑓′(0)exists. 

= lim 
𝑥→0+ 

𝑥 = 0. 

.
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(iii) 𝑓′(1) = lim 
𝑓(𝑥)−𝑓(1). 

𝑥→𝑓 𝑥−1 

=  lim 
𝑥2−1. 

𝑥→𝑓 𝑥−1 

= lim 
(𝑥+1)(𝑥−1) 

𝑥→𝑓 (𝑥−1) 

 

∴ 𝑓′(1)exists. 

= lim(𝑥 + 1) = 1 + 1 = 2. 
𝑥→𝑓 

Hence 𝑓(𝑥) is differentiable in the closed interval (0,1). 
 

Example 2:  
(  ) 

𝑥 𝑖𝑓 0 ≤ 𝑥 < 1 
A function 𝑓 is defined on 𝑅 where 𝑓 𝑥 = { 

Solution: 

𝐿𝑓′(1) = lim
 𝑓(𝑥)−𝑓(1) 

1 𝑖𝑓 𝑥 ≥ 1 
. Discuss the derivability at 𝑥 = 1. 

𝑥→1− 

=   lim 
𝑥−1. 

𝑥→1− 𝑥−1 

= lim 1. 
𝑥→1− 

∴ 𝐿𝑓′(1) = 1. 

𝑥−1 

𝑅𝑓′(1) = lim 
𝑓(𝑥)−𝑓(1). 

𝑥→1+ 

=  lim  
1−1. 

𝑥→1+ 𝑥−1 

= 0. 
∴ 𝑅𝑓′(1) = 0. 

𝑥−1 

𝐿𝑓′(1) ≠ 𝑅𝑓′(1). 
(i.e.) 𝑓′(1) does not exists. 
𝑓is not derivable at 𝑥  = 1. 

 
Example 3: 
Discuss the derivability of 𝑓(𝑥) 𝑎𝑡 0, 𝑓(𝑥) = |𝑥|. 
Solution: 

𝐿𝑓′(0) = lim 
𝑥→0− 

= lim 
𝑥→0− 

=  lim 
𝑥→0− 

=  lim 
𝑥→0− 

𝐿𝑓′(0) = −1. 
𝑅𝑓′(0) = lim 

 𝑓(𝑥)−𝑓(1) 
. 

𝑥−0 
 −𝑥−0 

. 
𝑥 

−𝑥 
 

 

𝑥 

1. 
 
 𝑓(𝑥)−𝑓(0) 

. 
𝑥→0+ 𝑥−0 

= lim 
𝑥−0 . 

𝑥→0+ 𝑥−0 

= lim 
1 

= 1. 
𝑥→0+ 1 

.

. 
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∴ 𝑅𝑓′(1) = 1. 
𝐿𝑓′(1) ≠ 𝑅𝑓′(1). 
(i.e.) 𝑓′(0) does not exists. 
𝑓is not derivable at 𝑥  = 0. 

 
Example 4: 

𝑥2 𝑠𝑖𝑛𝑥 
1 

𝑖𝑓 𝑥 ≠ 0 
𝑓(𝑥) = { 𝑥 . 

0 𝑖𝑓 𝑥 = 0 
Prove that 𝑓 is derivable at 𝑥 = 0but lim 𝑓′(𝑥) ≠ 𝑓′(0). 

𝑥→0 

Solution: 

𝐿𝑓′(0) = lim 
𝑥→0− 

 
 

𝑓(𝑥)−𝑓(1) 
 

 

𝑥−0 

= lim 
𝑥→0− 

𝑥2 
1 

𝑠𝑖𝑛
𝑥
−0

.
 

𝑥 
2 

=   lim  
𝑥    

𝑠𝑖𝑛 
1. 

𝑥→0−  𝑥 𝑥 

𝐿𝑓′(0) = 0. 

= lim 
𝑥→0− 

𝑠𝑖𝑛 
1 

= 0. 
0 

𝑅𝑓′(0) = lim 
𝑥→0+ 

 𝑓(𝑥)−𝑓(0) 
. 

𝑥−0 

= lim 
𝑥→0+ 

𝑥2 
1 

𝑠𝑖𝑛
𝑥
−0

.
 

𝑥−0 

= lim 𝑥2 𝑠𝑖𝑛 
1

 

 
 

∴ 𝑅𝑓′(1) = 0. 

𝑥→0+ 

=  lim 
𝑥→0+ 

𝑥 

𝑠𝑖𝑛 
1

 
0 

𝐿𝑓′(1) = 𝑅𝑓′(1). 
Hence 𝑓 is not derivable at 𝑥 = 0. 

 
Theorem: 
A function which is derivable at 𝑎 point is necessarily continuous at that point. 
Proof: 
Let a function 𝑓 be derivable at 𝑥 = 𝑐. 

𝑓(𝑥)−𝑓(𝑐) 
Then lim 

𝑥→𝑐 

 

𝑥−𝑐 
exist. 

To prove: 𝑓 is continuous at𝑥 = 𝑐.𝑓(𝑥) − 𝑓(𝑐) = 
𝑓(𝑥)−𝑓(𝑐) 

× (𝑥 − 𝑐) 
𝑥−𝑐 

lim[𝑓(𝑥) − 𝑓(𝑐)] = lim[
𝑓(𝑥)−𝑓(𝑐) 

(𝑥 − 𝑐)]. 
𝑥→𝑐 𝑥→𝑐 𝑥−𝑐 

= [lim 
𝑓(𝑥)−𝑓(𝑐)

][lim(𝑥 − 𝑐)]. 
𝑥→𝑐 𝑥−𝑐 𝑥→𝑐 

lim[𝑓(𝑥) − 𝑓(𝑐)] = 0. 
𝑥→𝑐 

lim 𝑓(𝑥) − lim 𝑓(𝑐) = 0. 
𝑥→𝑐 𝑥→𝑐 

lim 𝑓(𝑥) = lim 𝑓(𝑐). 
𝑥→𝑐 𝑥→𝑐 

.
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∴ lim 𝑓(𝑥) = 𝑓(𝑐). 
𝑥→𝑐 

∴ 𝑓is continuous in 𝑥 = 𝑐. 
Note: 
Converse of this theorem need not be true. 

 
Rolle’s theorem: 
If a function 𝑓 defined on [𝑎, 𝑏] is, 
(i) Continuous on [𝑎, 𝑏]. 
(ii) Derivable on (𝑎, 𝑏). 
(iii) 𝑓(𝑎) = 𝑓(𝑏)then there exists one real number 𝑐 between 𝑎 × 𝑏[𝑎 < 𝑐 < 𝑏] such that 

𝑓′(𝑐) = 0. 
Proof: 
Since the function is continuous on [𝑎, 𝑏], it is bounded. 
Let 𝑚 and 𝑀 are the infimum (g.l.b) and supremum (l.u.b) respectively of the function 𝑓 then 
there exists points 𝑐 and 𝑑 in [𝑎, 𝑏] such that 𝑓(𝑐) = 𝑚and 𝑓(𝑑) = 𝑀. 
Case (i): 
Let 𝑚 = 𝑀, then 𝑓 is constant. 
𝑓(𝑥) = 𝑀 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ [𝑎, 𝑏]. 
∴ 𝑓(𝑥) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ [𝑎, 𝑏]. 
For 𝑐 ∈ (𝑎, 𝑏), 𝑓(𝑐) = 𝑚, that is 𝑓′(𝑐) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑐 ∈ (𝑎, 𝑏). 
Case (ii): 
Let 𝑚 ≠ 𝑀. 
Now both 𝑚 and 𝑀 cannot be equal to 𝑓(𝑎). 
𝑓(𝑐) = 𝑚 ≠ 𝑓(𝑎) ⇒  𝑐  ≠  𝑎. 
Similarly, 𝑓(𝑐) = 𝑀 ≠ 𝑓(𝑏) ⇒ 𝑐 ≠ 𝑏. 
⇒ 𝑐 ∈ (𝑎, 𝑏). 
Claim: 𝑓′(𝑐) = 0. 
If 𝑓′(𝑐) < 0,there exists (𝑐, 𝑐 + 𝛿1) such that 𝑓(𝑥) < 𝑓(𝑐) = 𝑀 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑥 ∈ (𝑐, 𝑐 + 𝛿1). 
Which is a contradiction. 
If 𝑓′(𝑐) > 0,there exists (𝑐 − 𝛿1, 𝑐) such that 𝑓(𝑥) < 𝑓(𝑐) = 𝑀 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑥 ∈ (𝑐 − 𝛿1, 𝑐). 
Which is a contradiction. 
Hence,𝑓′(𝑐) = 0. 

 
Legrange’s  Mean Value Theorem 
If a function 𝑓 defined on [𝑎, 𝑏] is, 
(i) Continuous on [𝑎, 𝑏]. 
(ii) Derivable on (𝑎, 𝑏). 
𝑓(𝑎) = 𝑓(𝑏)then there exists one real number 𝑐 between 𝑎 × 𝑏[𝑎 < 𝑐 < 𝑏] such that 𝑓′(𝑐) = 
𝑓(𝑏)−𝑓(𝑎) 

. 
𝑏−𝑎 

Proof: 
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𝑎

∫𝑎 

 

Let 𝜙(𝑥) = 𝑓(𝑥) + 𝐴𝑥 where 𝐴 is a constant such that 𝜙(𝑎) = 𝜙(𝑏). 
Then 𝑓(𝑎) + 𝐴𝑎 = 𝑓(𝑏) + 𝐴𝑏. 
𝐴(𝑏 − 𝑎) = 𝑓(𝑎) − 𝑓(𝑏). 
= −[𝑓(𝑏) − 𝑓(𝑎)] 

𝐴 = 
−[𝑓(𝑏)−𝑓(𝑎)] 

𝑏−𝑎 

Since 𝜙(𝑥) is a sum of two continuous and derivable function. 
(i) 𝜙is continuous on [𝑎, 𝑏]. 
(ii) 𝜙is derivable on [𝑎, 𝑏]. 
(iii) 𝜙(𝑎) = 𝜙(𝑏). 
Therefore by Rolle’s theorem, there exists 𝑐 ∈ (𝑎, 𝑏) such that 𝜙′(𝑐) = 0. 
(i.e) 𝑓′(𝑐) + 𝐴 = 0. 
𝑓′(𝑐) = −𝐴. 

𝑓′(𝑐) = 
𝑓(𝑏)−𝑓(𝑎). 

𝑏−𝑎 

 

Cauchy’s Mean Value Theorem: 
If two functions 𝑓, 𝑔 defined on [𝑎, 𝑏] are 
(i) Continuous on [𝑎, 𝑏]. 
(ii) Derivable on [𝑎, 𝑏]. 
(iii) 𝑔′(𝑥) ≠ 0 for any 𝑥 ∈ (𝑎, 𝑏) then there exists one real number 𝑐 between 𝑎 𝑎𝑛𝑑 𝑏 such 

𝑓(𝑏)−𝑓(𝑎) 𝑓′(𝑐) 
that 

𝑔(𝑏)−𝑔(𝑎)  
= 

𝑔′(𝑐) 

 
The Fundamental Theorem of Calculus: 
A function 𝑓 is bounded and integrable on [𝑎, 𝑏] and there exists a function 𝑓 such that 𝑓′ = 

𝑓 𝑜𝑛 [𝑎, 𝑏]. Then 

Proof: 
∫

𝑏 
𝑓 𝑑𝑥 = 𝑓(𝑏) − 𝑓(𝑎). 

Given 𝜀 > 0. There exists 𝛿 > 0 such that for every partition 𝑃 where, 
𝑃 = {𝑎 = 𝑥0, 𝑥1, … … … . , 𝑥𝑛−1, 𝑥𝑛 = 𝑏}. 
With norm 𝜇(𝑃) − 𝛿 (𝑤ℎ𝑒𝑟𝑒 𝜇(𝑃) = 𝑚𝑎𝑥∆𝑥𝑖). 
| ∑𝑛 𝑓(𝑡 ) ∆𝑥 − 𝑏 𝑓 𝑑𝑥| < 𝜀. [𝑠𝑖𝑛𝑐𝑒 𝑡 ∈ (𝑥 , 𝑥 )] . 

𝑖=1 𝑖 𝑖 ∫𝑎 𝑖 𝑖−1 𝑖 

𝑛 
𝑖=1 𝑓(𝑡𝑖) ∆𝑥𝑖 

𝑏 

= ∫𝑎 
𝑓 𝑑𝑥. ---------------------- (1) 

By Lagrange’s Mean value Theorem, 𝑓 (𝑥𝑖)−𝑓(𝑥𝑖−1) 
= 𝑓(𝑡 ). 

(i.e). 𝑓(𝑥𝑖)−𝑓(𝑥𝑖−1) 
= 𝑓(𝑡 ). 

𝑥𝑖−𝑥𝑖−1 
𝑖
 

∆𝑥𝑖 
𝑖 

⇒ 𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1) = 𝑓(𝑡𝑖)∆𝑥𝑖. -------------------- (2) 
Using (2) in (1) we get, 

𝑏 𝑓 𝑑𝑥 = ∑𝑛 [𝑓(𝑥 ) − 𝑓(𝑥 )]. 
∫𝑎 𝑖=1 𝑖 𝑖−1 

𝑏 𝑓 𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎).

.

⇒ ∑ 
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