

GOVERNMENT ARTS AND SCIENCE COLLEG, KOVILPATTI – 628 503. (AFFILIATED TO MANONMANIAM SUNDARANAR UNIVERSITY, TIRUNELVELI) DEPARTMEN OF MATHEMATICS STUDY E - MATERIAL CLASS : III B.SC (MATHEMATICS) SUBJECT : REAL ANALYSIS – II (SMMA51)

SEM	ESTER – V	LTPC
	CORE PAPER – VIII	3204
	REAL ANALYSIS - II (75 Hours) (SMMA52)	
Objectives:		
- Tou - Tokı - Tost	nderstand the real number of system and metric spaces now the concepts of continuity and Riemann integrals udy the concept of connectedness and compactness	
Unit I	Metric spaces – Examples – bounded sets – open ball – open sets – subs Interior of a set. 13L	paces –
Unit II	Closed sets – closure – Limit points – Dense sets – complete metric s Cantor's intersection theorem – Baire's Category Theorem. 16L	space –
Unit III	Continuous functions on metric spaces : Functions - continuous at a point real line – Functions - Continuous – uniform continuous in a metric s Discontinuous function of R.	t on the space – SL
Unit IV	Connectedness and compactness : Connectedness – connected subset connectedness and continuity – compact metric spaces – compact subset Heine Borel theorem. 16L	of R – of R – 17
Unit V	Riemann Integral : Sets of measure zero – Existence of the Riemann integral – Derivatives – theorem – Fundamental theorem of Calculus – Mean value theorem – Ca mean value theorem – Taylor's theorem. 15L	Rolle's auchy's
Text Books:	nan dan serie dan ser Serie	
. M.P	Arumugam & Issac – Modern Analysis	
Ivialic Books for Ba	s.c - Mathematical Analysis, whey Eastern Limited, New Delhi.	
• Tom	M. Apostal – Mathematical Analysis, II Edition, Narosa Publishing Hous	e, New
Delhi	(Unit I) (1997)	1999 - 1997 - 1997 - 1999 - 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
Goldb (200)	erg .R - Methods of Real Analysis Oxford and IBH Publishing Co. New	v Delhi
(200)		
• Views	nath Naik K – Real Analysis, Emerald Publishers, Chennai	

Page **18** of **39**

UNIT	CONTENT	PAGE
I	METRIC SPACES	02
II	CLOSED SETS	12
ш	CONTINUOUS FUNCTIONS ON METRIC SPACES	26
IV	CONNECTEDNESS AND COMPACTNESS	34
v	RIEMANN INTEGRAL	42

<u>UNIT - I</u> <u>METRIC SPACES</u>

Introduction

A Metric Space is a set equipped with a reasonable concept of distance called a <u>metric</u>. That means to measure the distance between two elements in the set.

1.1 Definition and Examples

Definition:

A <u>Metric Space</u> is a non empty set M together with a function $d: M \times M \rightarrow R$ satisfying the following conditions.

- (i) $d(x, y) \ge 0$ for all $x, y \in M$
- (ii) d(x, y) = 0 if and only if x = y
- (iii) d(x, y) = d(y, x) for all $x, y \in M$
- (iv) $d(x, z) \le d(x, y) + d(y, z)$ for all $x, y, z \in M$ [Triangle Inequality]

d is called a <u>metric</u> or <u>distance function</u> on M and d(x, y) is called the distance between x and y in M. The metric space M with the metric d is denoted by (M, d) or simply by M when the underlying metric is clear from the context.

Example 1.

(Usual Metric on R)

Let **R** be the set of all real numbers. Define a function $d: M \times M \to R$ by d(x, y) = |x - y|. Prove that d is a metric on **R**.

Proof.

Let x , $y \in \mathbf{R}$.

i) Clearly d
$$(x, y) = |x - y| \ge 0$$
.

ii)
$$d(x, y) = 0 \iff |x - y| = 0$$
$$\Leftrightarrow x - y = 0$$
$$\Leftrightarrow x = y$$
$$\therefore d(x, y) = 0 \iff x = y$$

iii)
$$d(x, y) = |x - y|$$
$$= |y - x|$$
$$= d(y, x)$$
$$\therefore d(x, y) = d(y, x)$$

$$d(x, z) = |x - z|$$

= |x - y + y - z|
 $\leq |x - y| + |y - z|$
= d(x, y) + d(y, z).

 $\therefore d(x, z) \leq d(x, y) + d(y, z).$

Hence d is a metric on **R**.

Example 2

(Usual Metric on C)

Let **C** be the set of all Complex numbers. Define a function $d: M \times M \to C$ by d(z, w) = |z - w| where z = x + i y and w = u + i v. Prove that d is a metric on **C**.

Proof.

Let $z, w \in C$.

i)
$$d(z, w) = |z - w|$$

= $\sqrt{(x - u)^2 + (y - v)^2}$
 $\ge 0.$
 $\therefore d(z, w) \ge 0.$

ii)
$$d(x, y) = 0 \iff |z - w| = 0$$
$$\Leftrightarrow \sqrt{(x - u)^{2} + (y - v)^{2}}$$
$$\Leftrightarrow (x - u)^{2} + (y - v)^{2} = 0$$
$$\Leftrightarrow (x - u)^{2} = 0 \text{ and } (y - v)^{2} = 0$$
$$\Leftrightarrow (x - u) = 0 \text{ and } (y - v) = 0$$
$$\Leftrightarrow x = u \text{ and } y = v$$
$$\Leftrightarrow x + i y = u + iv$$
$$\therefore d(z, w) = 0 \Leftrightarrow z = w.$$

iii)
$$d(z, w) = |z - w|$$

= $|w - z|$
= $d(w, z)$
 $\therefore d(z, w) = d(w, z).$

iv) Let
$$z, w, l \in C$$
.

$$d(z, 1) = |z - 1|$$

= |z - 1 + 1 - w|
 $\leq |z - 1| + |1 - w|$
= d(z, 1) + d(1, w)
 $\therefore d(z, 1) \leq d(z, 1) + d(1, w)$

Hence d is a metric on C.

Example 3

(Discrete metric on M)

Let M be any non-empty set. Define a function $d: M \times M \rightarrow R$ by

 $d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$ Prove that d is a metric on M.

Proof.

Let $x, y \in M$. Clearly $d(x, y) \ge 0$ and $d(x, y) = 0 \Leftrightarrow x = y$.

$$d(x, y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \end{cases}$$
$$= \begin{cases} 0 & \text{if } y = x \\ 1 & \text{if } y \neq x \end{cases}$$

$$\therefore d(x, y) = d(y, x).$$

Let $x, y, z \in M$. We shall <u>prove that</u> $d(x, z) \le d(x, y) + d(y, z)$. **Case (i)** Suppose x = z. Then (x, z) = 0 $d(x, y) + d(y, z) \ge 0$. $\therefore d(x, z) \le d(x, y) + d(y, z)$. **Case (ii)** $x \ne z$. Then d(x, z) = 1.

Also , since x, z are distinct , $y \neq x$ and $y \neq z$.

$$\therefore d(x, y) + d(y, z) \ge 1.$$

$$\therefore d(x, z) \le d(x, y) + d(y, z).$$

In the above cases, $d(x, z) \le d(x, y) + d(y, z)$.

Hence d is metric on M.

Note :

By Minkowski 's Inequality, " If
$$p \ge 1$$
, $\left[\sum_{i=1}^{n} |x + u|^{p}\right]^{1/p} \le \left[\sum_{i=1}^{n} |x|^{p}\right]^{1/p} + \left[\sum_{i=1}^{n} |x|^{p}\right]^{1/p}$

Where a_1, a_2, \ldots, a_n and b_1, b_2, \ldots, b_n are real numbers.

Example 3

(Usual Metric on R^n)

In Rⁿ we define $d(x, y) = \left[\sum_{i=1}^{n} (xi - yi)^2\right]^{1/2}$ where $x = (x_1, x_2, ..., x_n)$ and

 $y = (y_1, y_2, \dots, y_n)$. Prove that d is a metric on R^n .

Proof :

Given that

$$d(x, y) = \left[\sum_{i=1}^{n} (xi - yi)^{2}\right]^{1/2} \text{ where } x = (x_{1}, x_{2}, \dots, x_{n}) \text{ and } y = (y_{1}, y_{2}, \dots, y_{n}).$$

i)
$$d(x, y) = \left[\sum_{i=1}^{n} (xi - yi)^{2}\right]^{1/2} \ge 0.$$

ii)
$$d(x, y) = 0 \iff \left[\sum_{i=1}^{n} (xi - yi)^{2}\right]^{1/2} = 0$$

$$\Leftrightarrow \sum_{i=1}^{n} (xi - yi)^{2} = 0$$

$$\Leftrightarrow (xi - yi)^{2} = 0 \text{ for each } i = 1, 2, \dots$$

$$\Leftrightarrow (xi - yi)^2 = 0 \quad \text{for each } i = 1, 2, ..., n$$

$$\Leftrightarrow \quad xi - yi = 0 \quad \text{for each } i = 1, 2, ..., n$$

$$\Leftrightarrow \quad xi = yi \quad \text{for each } i = 1, 2, ..., n$$

$$\Leftrightarrow \quad x = y.$$

$$(x, y) = 0 \quad \Leftrightarrow \quad x = y.$$

$$\therefore d(x, y) = 0 \iff x = y$$

iii)
$$d(x, y) = \left[\sum_{i=1}^{n} (xi - yi)^{2}\right]_{1/2}^{1/2}$$
$$= \left[\sum_{i=1}^{n} (yi - xi)^{2}\right]_{1/2}^{1/2}$$
$$= d(y, x)$$

iv) Let x, y,
$$z \in \mathbb{R}^n$$
.
To prove that $d(x, z) \le d(x, y) + d(y, z)$

Take $a_i = x_i - y_i \mbox{, } b_i = y_i - z_i \mbox{ and } p = 2 \mbox{ and using }$

Minkowski 's Inequality, we have
$$\left[\sum_{i=1}^{n} |xi - yi|^2\right]^{1/2} \leq \left[\sum_{i=1}^{n} |x|^2\right]^{1/2} + \left[\sum_{i=1}^{n} |x|^2\right]^{1/2}$$

 $\label{eq:constraint} \begin{array}{l} \dot{\cdot} \; d \; (x \, , \, z) \; \leq \; d \; (x \, , \, y) \; + d \; (y \, , \, z) \\ \text{Hence } d \; \text{is a metric on } \; R^n \, . \end{array}$

1.2.Open Sets in a Metric Space

Definition:

Let (M, d) be a metric space. Let $a \in M$ and r be a positive real number. The **open ball** or the open sphere with center a and radiusr is denoted by B_d (a, r) and is the subset of M defined by B_d $(a, r) = \{x \in M / d(a, x) < r\}$. We write B(a, r) for $B_a(a, r)$ if the metric domain of a positive real number.

 $B_d(a, r)$ if the metric d under consideration is clear.

Examples:

- 1. In **R** with usual metric B(a, r) = (a r, a + r).
- 2. In \mathbb{R}^2 with usual metric B(a, r) is the interior of the circle with center *a* and radius *r*.

Definition: Let (M, d) be a metric space. A subset A of M is said to be open in M if for each $x \in A$ there exists a real number r > 0 such that $B(x, r) \subseteq A$.

Note. By the definition of open set, it is clear that ϕ and M are open sets.

Examples:

1. Any open interval (a, b) is an open set in **R** with usual metric.

Proof : Let $x \in (a, b)$. Choose a real number r such that $0 < r \le min \{x - a, b - x\}$. Then $B(x, r) \subseteq (a, b)$. $\therefore (a, b)$ is open in R.

2. Every subset of a discrete metric space *M* is open.

Proof :

Let A be a subset of M. If $A = \phi$, then A is open. Otherwise, let $x \in A$. Choose a real number r such that $0 < r \le 1$. Then $B(x, r) = \{x\} \subseteq A$ and hence A is open.

3. Set of all rational numbers **Q** is not open in **R**.

Proof :

Let $x \in \boldsymbol{Q}$.

For any real number r > 0, B(x, r) = (x - r, x + r) contains both rational and irrational numbers.

 $\therefore B(x, r) \not\subseteq Q$ and hence Q is not open.

Theorem 1.1

Let (M, d) be a metric space. Then each open ball in M is an open set.

Proof.

Let B(a, r) be an open ball in M. Let $x \in B(a, r)$. Then d(a, x) < r. Take $r_1 = r - d(a, x)$.Then $r_1 > 0$. We claim that $B(x, r_1) \subseteq B(a, z)$.

Let $y \in B(x, r_1)$. Then $(x, y) < r_1$.

```
Now,
```

 $d(a, y) \leq d(a, x) + d(x, y)$ $< d(a, x) + r_1$ = d(a, x) + r - d(a, x) = r. $\therefore d(a, y) < r.$ $\therefore y \in B(a, r).$ $\therefore B(x, r_1) \subseteq B(a, r).$ Hence B(a, r) is an open ball.

Theorem1.2

In any metric space M, the union of open sets is open.

Proof.

Let (M, d) be a Metric Space. Let $\{A_i | i \in I\}$ a family of open sets in M.

We have <u>to prove</u> $A = \bigcup A_i$ is open in M. If $A = \phi$ then A is open. \therefore Let $A \neq \phi$. Let $x \in A$. Then $x \in A_i$ for some $\in I$. Since A_i is open, there exists an open ball B(x, r) such that $B(x, r) \subseteq A_i$.

 $\therefore B(x, r) \subseteq A.$ Hence *A* is open in *M*.

Theorem 1.3

In any metric space M, the intersection of a finite number of open sets is open.

Proof:

Let A_1, A_2, \ldots, A_n be open sets in M.

We have to prove $A = A_1 \cap A_2 \cap ... \cap A_n$ is open in M.

If $A = \phi$ then A is open. \therefore Let $A \neq \phi$. Let $x \in A$. Then $x \in A_i$ for each i = 1, 2, ..., n. Since each A_i is open, there exists an open ball $B(x, r_i)$ such that $B(x, r_i) \subseteq A_i$. Take $r = min \{ r_1, r_2, ..., r_n \}$. Clearly,r > 0 and $B(x, r) \subseteq B(x, r_i)$ for all i = 1, 2, ..., n. Hence $B(x, r) \subseteq A_i$ for each i = 1, 2, ..., n. $\therefore B(x, r) \subseteq A$. \therefore Ais open in M.

Theorem 1.4

Let (M, d) be a metric space and $A \subseteq M$. Then A is open in M if and only if A can be expressed as union of open balls.

Proof :

Suppose that A is open in M.

Then for each $x \in A$ there exists an open ball $B(x, r_x)$ such that, $B(x, r_x) \subseteq A$.

$$A = \bigcup_{x \in A} B(x, r_x).$$

Thus *A* is expressed as union of open balls.

Conversely, assume that A can be expressed as union of open balls. Since open balls are open and union of open sets is open, A is open.

1.2 Interior of a set

Definition:

Let (M, d) be a metric space and $A \subseteq M$. A point $x \in A$ is said to be an <u>interior</u> point of A if there exists a real number r > 0 such that $B(x, r) \subseteq A$.

The set of all interior points is called as **interior of** *A* and it is denoted by *Int A*.

Note: Int $A \subseteq A$.

Example: In **R** with usual metric, let A = [1, 2]. 1 is not an interior points of A, since for any real number > 0, B(1, r) = (1 - r, 1 + r) contains real numbers less than 1. Similarly, 2 is also not an interior point of A. In fact every point of (1, 2) is a limit point of A. Hence **Int**A = (1, 2).

Note:

(1) Int $\phi = \phi$ and Int M = M. (2) *A* is open \Leftrightarrow Int A = A. (3) $A \subseteq B \Rightarrow$ Int $A \subseteq$ Int *B*.

Theorem1.5

Let (M, d) be a metric space and $A \subseteq M$. Then **Int** A = Union of all open sets contained in A.

Proof.

Let $G = \bigcup \{B/B \text{ is an open set contained in A} \}$ we have to prove Int A = G. Let $x \in Int A$.

Then x is an interior point of A. \therefore there exists a real number r > 0 such that $B(x, r) \subseteq A$. Since open balls are open, B(x, r) is an open set contained in A. $\therefore B(x, r) \subseteq G$. $\therefore x \in G$.

 $\therefore Int A \subseteq G \dots (*)$

Let $\in G$.

From (*) and (**), we get Int A = G.

Note:Int A is an open set and it is the largest open set contained in A.

Theorem1.6

Let M be a metric space and A, $B \subseteq M$. Then

i)	$Int (A \cap B) = (Int A) \cap (IntA)$
ii)	$Int (A \cup B) \supseteq (Int A) \cup (Int A)$

Proof.

i) $A \cap B \subseteq A \Rightarrow Int(A \cap B) \subseteq Int A.$

Similarly, $Int (A \cap B) \subseteq Int B$.

 $\therefore Int (A \cap B) \subseteq (Int A) \cap (IntA) \dots (a)$

Int $A \subseteq A$ and Int $B \subseteq B$.

 $\therefore (Int A) \cap (Int A) \subseteq A \cap B$

Now, $(Int A) \cap (Int A)$ is an open set contained in $\cap B$.

But, *Int* $(A \cap B)$ is the largest open set contained in $\cap B$. \therefore (*Int* A) \cap (*Int* A) \subseteq *Int* ($A \cap B$)(b)

From (a) and (b) , we get $Int(A \cap B) = (IntA) \cap (IntA)$

(ii) $A \subseteq A \cup B \Rightarrow IntA \subseteq Int(A \cup B)$ Similarly, Int $B \subseteq Int(A \cup B)$ \therefore Int $(A \cup B) \supseteq (IntA) \cup (IntA)$

Note1.7: $Int(A \cup B)$ need not be equal to $IntA \cup IntA$

For, In **R** with usual metric, Let A = (0,1] and B = (1,2). Then $A \cup B = (0,2)$. \therefore Int $(A \cup B) = (0,2)$ Now, IntA = (0,1) and IntB = (1,2) and hence Int $A \cup$ IntA = (0,2)- {2}. \therefore Int $(A \cup B) \neq$ (IntA) \cup (Int A)

1.2.Subspace

Definition:

Let(M, d) be a metric space. Let M_1 be a nonempty subset of M. Then M_1 is also a metric space under the same metric d. We call (M_1, d) is a **subspace** of (M, d).

Theorem1.8

Let M be a metric space and M_1 a subspace of M. Let $A \subseteq M_1$. Then A_1 is open in M_1 if and only if $A_1 = A \cap M_1$ where A is open in M.

Proof:

Let M_1 be a subspace of M. Let $a \in M_1$.

Let $M_1(a, r)$ be the open ball in M_1 with center a and radius r. Then $B_1(a, r) = B(a, r) \cap M_1$ where B(a, r) is the open ball in M with center a and radius r. Then $B_1(a, r) = \{x \in M_1/d(a, x) < r\}$.

Also, $B(a, r) = \{x \in M/d(a, x) < r\}$. Hence, $B_1(a, r) = B(a, r) \cap M_1$.

Let A_1 be an open set in M_1 .

Then A = B₁ (x, r (x)) = $\bigcup_{x \in A_1} [B(x, r(x)) \cap M_1]$ = $[\bigcup_{x \in A_1} B(x, r(x))] \cap M_1$ = A $\cap M_1$ Where A = $\bigcup_{x \in A_1} B(x, r(x))$ which is open in M.

Conversely, let $A = G \cap M_1$ where G is open in M. We shall prove that A_1 is open in M. Let $x \in A_1$. Then $x \in A$ and $x \in M_1$. Since A is open in M, there exists an open ball B(x,r) such that B(x,r) \subseteq A.

 $\therefore B(x, r)M_1 \cap \subseteq A \cap M_1.$ i.e. $B_1(x, r) \subseteq M_1.$ $\therefore A_{1}$ is open in $M_1.$

1.2.Bounded Sets in a Metric space.

Definition:

Let(M, d) be a metric space. A subset A of M is said to be **<u>bounded</u>** if there exists a positive real number k such that $d(x, y) \le k \forall x, y \in A$.

Example:

Any finite subset A of a metric space (M, d) is bounded.

For,

Let *A* be any finite subset of *M*.

If $A = \phi$, then A is obviously bounded.

Example:

[0,1] is a bounded subset of **R** with usual metric since $d(x, y) \le 1$ for all $x, y \in [0,1]$.

Example:

 $(0, \infty)$ is an unbounded subset of *R*.

Example:

Any subset A of a discrete metric space M is bounded since

 $d(x, y) \le 1 \text{ for all } x, y \in A.$

Note:

Every open ball B(x, r) in a metric space (M, d) is bounded.

Definition:

Let(*M*, *d*) be a metric space and $A \subseteq M$. The diameter of *A*, denoted by d(A), is defined by $d(A) = l. u. b \{ d(x, y)/x, y \in A \}$.

Example:

In R with usual metric the diameter of any interval is equal to the length of the interval. The diameter of [0,1] is 1.

<u>UNIT – II</u> <u>CLOSED SETS</u>

2.1.ClosedSets

Definition:

A subset A of a metric space M is said to be <u>closed</u> in M if its complement A is open in M.

Examples

1. In **R** with usual metric any closed interval [a, b] is closed. For, $[a, b]^c = \mathbf{R} - [a, b] = (-\infty, a) \cup (b, \infty).$ $(-\infty, a)$ and (b, ∞) are open sets in R and hence $(-\infty, a) \cup (b, \infty)$ is open in **R**. i.e. $[a, b]^c$ is open in **R**. $\therefore [a, b]$ is open in **R**.

2. Any subset A of a discrete metric space M is closed since A^c is open as every subset of M Is open.

Note. In any metric space M, ϕ and M are closed sets since $\phi^c = M$ and $M^c = \phi$ which are open in M. Thus ϕ and M are both open and closed in M.

Theorem 2.1.

In any metric space M, the union of a finite number of closed sets is closed.

Proof:

Let (*M*, *d*) be a Metric space.

Let B[a, r] be a closed ball in M. Case (i) Suppose $B[a, r]^c = \phi$ $\therefore B[a, r]^c$ is open and hence B[a, r] is closed. Case (ii) Suppose $B[a, r]^c \neq \phi$ Let $x \in B[a, r]^c$. $\therefore x \notin B[a, r]^c$. $\therefore d(a, x) > r$ $\therefore d(a, x) - r > 0$. Let $r_1 = d(a, x) - r$. We claim that $B(x, r_1) \subseteq B[a, r]^c$. Let $y \in B(x, r_1)$. Then $d(x, y) < r_1 = d(a, x) - r$. $\therefore d(a, x) > d(x, y) + r$. Now, $d(a, x) \le d(a, y) + d(y, x)$. $d(a, y) \ge d(a, x) - d(y, x)$. > d(x, y) + r - d(y, x). = r. Thus d(a, y) > r. $\therefore y \notin B[a, r]$. Hence $y \in B[a, r]^c$.

$$\therefore B(x, r_1) \subseteq B[a, r]^c.$$

- $\therefore B[a, r]^c$ is open in M.
- $\therefore B[a, r]$ is closed in M.

Theorem 2.2

In any metric space M, arbitrary intersection of closed sets is closed.

Proof:

Let (M, d) be a metric space.

Let $\{A_i/i \in I\}$ be a family of closed sets in M. We have to prove $\bigcap_{i \in I} A_i$ is closed. We have $(\bigcap_{i \in I} A_i)^c = \bigcup_{i \in I} A_i^c$ (by De Morgan's law) Since A_i is closed A_i^c is open. Hence $\bigcup_{i \in I} A_i^c$ is open. $\therefore (\bigcap_{i \in I} A_i)^c$ is open in M. $\therefore \bigcap_{i \in I} A_i$ is closed in M.

Theorem 2.3

Let M_1 be a subspace of a metric space M. Let $F_1 \subseteq M_1$. Then F_1 is closed in M_1 if and only if $F_1 = F \cap M_1$ where F is a closed set in M.

Proof.

Suppose that *F* is closed in M_1 . Then $M_1 - F_1$ is open in M_1 . $\therefore M_1 - F_1 = A^c \cap M_1$ where *A* is open in *M*. Now, $F_1 = A \cap M_1$. Since *A* is open in *M*, A^c is closed in *M*. Thus, $F_1 = F \cap M_1$ where $F = A^c$ is closed in *M*. Conversely, assume that $F_1 = F \cap M_1$ where *F* is closed in *M*. Since *F* is closed in *M*, F^c is open in *M*.

 $\therefore F^c \cap M_1$ is open in M_1 .

Now, M_1 - $F_1 = F^c \cap M_1$ which is open in M_1 . \therefore F_1 is closed in M_1 . Proof of the converse is similar.

2.1.Closure.

Definition:

Let *A* be a subset of a metric space (M, d). The <u>closure</u> of *A*, denoted by *A* is defined to be the intersection of all closed sets which contain *A*.

i.e. $A = \cap \{B/B \text{ is closed in } M \text{ and } A \subseteq B\}$.

Note

(1) Since intersection of closed sets is closed, A is closed set.

(2) A is the smallest closed set containing A.

(3) A is closed \Leftrightarrow A =A.

Theorem 2.4:

Let (M, d) be a metric space. Let $A, B \subseteq M$. Then

(i) $A \subseteq B \Rightarrow \overline{A} \subseteq \overline{B}$ (ii) $\overline{A \cup B} = \overline{A \cup B}$ (iii) $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$

Proof:

(i) Let
$$A \subseteq B$$
,

Now $\overline{B} \supseteq B \supseteq A$. Thus \overline{B} is a closed set containing A. But \overline{A} is the smallest closed set containing A.

$\therefore \overline{A} \subseteq \overline{B}$

(ii)we have $A \subseteq A \cup B$. $\therefore \overline{A} \subseteq \overline{A \cup B}$. (by (i)). Similarly $\therefore \overline{B} \subseteq \overline{A \cup B}$. $\therefore \overline{A} \cup \overline{B} \subseteq \overline{A \cup B} \longrightarrow$ (1)

Now \overline{A} is a closed set containing A and \overline{B} is a closed set containing B. $\therefore \overline{A} \cup \overline{B}$ is a closed set containing $A \cup B$. But $\overline{A} \cup \overline{B}$ is the smallest closed set containing $A \cup B$. $\therefore \overline{A \cup B} \subseteq \overline{A} \cup \overline{B} \longrightarrow (2)$ From (1) and (2) we get

$$\therefore \ \overline{A \cup B} = \overline{A} \cup \overline{B}$$

(ii) We know that $A \cap B \subseteq A$ $\overline{A \cap B} \subseteq \overline{A}$ (by (i)). Similarly $\overline{A \cap B} \subseteq \overline{B}$

Similarly $\overline{A \cap B} \subseteq \overline{\overline{A}}$ $\therefore \overline{A \cap B} \subseteq \overline{\overline{A} \cap \overline{B}}$

Note:

 $\overline{A \cap B}$ need not be equal to $\overline{A} \cap \overline{B}$

2.1 Limit Point

Definition:

Let (M, d) be a Metric space. Let $A \subseteq M$. Let $x \in M$. Then x is called a <u>limit point</u> of A if every open ball with Centre x contains at least one point of A differ from x. (*i. e*) $B(x, r) \cap (A - \{x\}) \neq \phi$ for all r > 0.

The set of all limit points of A is called the **derived set** of A and is denoted by D(A)

Theorem 2.4

Let (M, d) be a metric space and $A \subseteq M$. Then x is a limit point of A if and only if every open ball with center x contains infinite number of points of A.

Proof :

Let x be a limit point of A. Suppose an open ball B(x, r) contains only a finite number of points of A.

 $B(x,r) \cap (A - \{x\}) = \{x_1, x_2, \dots, x_n\}$

let $r_1 = min\{d(x, x_i)/i = 1, 2, ..., n\}$.

Since $x \neq x_i$, $d(x, x_i) > 0$ for all i = 1, 2, ..., n and hence $r_1 > 0$. Also $B(x, r) \cap (A - \{x\}) = \phi$. $\therefore x$ is not a limit point of A which is a contradiction. Hence every ball with center x contains infinite number of points of A.

The converse is obvious.

Corollary 1: Any finite subset of a metric space has no limit points.

Theorem 2.5

Let **M** be a metric space and $A \subseteq M$. Then $\overline{A} = A \cup D(A)$.

Proof: Let $x \in A \cup D(A)$. we shall prove that $x \in \overline{A}$

Suppose $x \notin \overline{A}$

 $\therefore x \in M - \overline{A}$ and since \overline{A} is closed $M - \overline{A}$ is open.

∴ There exists an open ball $B(x,r) \subseteq M - \overline{A}$ ∴ $B(x,r) \cap \overline{A} = \phi$. $\therefore B(x,r) \cap A = \phi. \text{ (since } A \subseteq \overline{A} \text{)}$ $x \notin A \cup D(A) \text{ which is a contradiction.}$ $\therefore x \in \overline{A}$ $\therefore A \cup D(A) \subseteq \overline{A}$ Now let $x \in \overline{A}$ To prove $x \in A \cup D(A)$.
If $x \in A$.
clearly $x \in A \cup D(A)$.
Suppose $x \notin A$. We claim that $x \in D(A)$.

Suppose $x \notin D(A)$. Then there exists an open ball B(x, r) such that $B(x, r) \cap A = \phi$.

 $\therefore B(x, r)^c \supseteq A$ and $B(x, r)^c$ is closed.

But \overline{A} is the smallest closed set containing A. $\therefore \overline{A} \subseteq B(x, r)^c$. But $x \in \overline{A}$ and $x \notin B(x, r)^c$ which is a contradiction. Hence $x \in D(A)$. $\therefore x \in A \cup D(A)$. $\therefore \overline{A} \subseteq A \cup D(A)$ Hence $\therefore A \cup D(A) = \overline{A}$

Corollary 1: *A* is closed iff *A* contains all its limit points. (i.e.) *A* is closed iff $D(A) \subseteq A$. **Proof:** *A* is closed $\Leftrightarrow A = \overline{A}$ (by theorem 2.13) $\Leftrightarrow A = A \cup D(A)$.

 $\Leftrightarrow \boldsymbol{D}(A) \subseteq A.$

Corollary 2: $x \in A \Leftrightarrow B(x, r) \cap A \neq \phi$ for all r > 0. **Proof:** let $x \in A$ then $x \in A \cup D(A)$. $\therefore x \in A \text{ or } x \in D(A)$.

If $x \in A$ then $x \in B(x, r) \cap A$.

if $x \in D(A)$ then $B(x, r) \cap A \neq \phi$ for all r > 0. Hence in both cases $B(x, r) \cap A \neq \phi$ for all r > 0. Conversely Suppose $B(x, r) \cap A \neq \phi$ for all r > 0. We have to prove that, $x \in \overline{A}$ If $x \in A$ trivially $x \in \overline{A}$

Let $x \notin A$. Then $A - \{x\} = A$.

 $\therefore B(x,r) \cap A - \{x\} \neq \phi.$

 $\therefore x \in D(A).$ $\therefore x \in \overline{A}$

Corollary 3:

 $x \in A \Leftrightarrow G \cap A \neq \phi$ for every open set *G* containing *x*. Dense sets Proof:

Let $x \in A$

Let G be an open set containing x then there exists r > 0 such that $B(x, r) \subseteq G$. Also, since $x \in A$, $B(x, r) \cap A \neq \phi$. $\therefore G \cap A \neq \phi$. Conversely suppose $G \cap A \neq \phi$ for every open set G containing x. Since B(x, r) is an open set containing x, we have $B(x, r) \cap A \neq \phi$. $\therefore x \in A$

Definition:

A subset A of a metric space M is said to be dense in M or every where dense if A = M.

Definition:

A metric space M is said to be separable if there exists a countable dense subset in M.

Note :

- (1) Any countable metric space is separable.
- (2) Any uncountable discrete metric space is not separable.

Theorem 2.6:

Let M be a metric space and $A \subseteq M$. Then the following are equivalent.

- (i) A is dense in M.
- (ii) The only closed set which contains A is M.
- (iii) The only open set disjoint from A is $\boldsymbol{\phi}$.
- (iv) **A** intersects every non empty open set.
- (v) **A** intersects every open ball.

Proof:

(i)⇒(ii). Suppose A is dense in M. We claim that The only closed set which contains A is M.

Suppose A is dense in M. Then A = M. (1)

Now, let $F \subseteq M$ be closed set containing A. Since \overline{A} is a closed set containing A, we have $\overline{A} \subseteq F$. Hence $M \subseteq F$.(by (1)) $\therefore M = F$.

Hence, the only closed set which contains **A** is **M**.

(iii) \Rightarrow (iii) Suppose the only closed set which contains A is M We claim that The only open set disjoint from Ais ϕ . Suppose (iii) is not true.

Then there exists a non empty open set **B** such that, $B \cap A = \phi$.

 $\therefore B^c$ is closed set and $B^c \supseteq A$.

Further, since $B \neq \phi$ we have $B^c \neq M$ which is a contradiction to (ii). Hence (ii) \Rightarrow (iii). Obviously, (iii) \Rightarrow (iv).

 $(iv) \Rightarrow (v)$, since every open ball is an open set.

(iv) \Rightarrow (i) Suppose *A* intersects every non empty open set.

We claim that $oldsymbol{A}$ intersects every open ball

Let $x \in M$. Suppose every open ball B(x, r) intersects A. Then by corollary, $x \in \overline{A}$ $\therefore M \subseteq \overline{A}$ But trivially $\overline{A} \subseteq M$. $\therefore A = M$.

 \therefore *A* is dense in *M*.

2.1. Completeness

Definition:

let (M, d) be a metric space. Let $(x_n) = x_1, x_2, ..., x_n, ...$ be a sequence of points in M. Let $x \in M$. We say that (x_n) converges to x if given $\varepsilon > 0$ there exists a positive integer n_0 such that $d(x_n, x) < \varepsilon$ for all $n \ge n_0$. Also x is called a limit of (x_n) .

If (x_n) converges to x we write $\lim_{n\to\infty} x_n = x$ or $(x_n) \to x$.

Note 1: $(x_n) \to x$ iff for each open ball $B(x, \varepsilon)$ with Centre x there exists a positive integer n_0 such that $x_n \in B(x, \varepsilon)$ for all $n \ge n_0$.

Thus the open ball $B(x, \varepsilon)$ contains all but a finite number of terms of the sequence.

Note 2: $(x_n) \rightarrow x$ iff the sequence of real numbers $d((x_n, x)) \rightarrow 0$.

Theorem2.6:

For a convergent sequence (x_n) the limit is unique.

Proof: Suppose $(x_n) \rightarrow x$ and $(x_n) \rightarrow y$.

Let $\varepsilon > 0$ be given. Then there exist positive integers n_1 and n_2 such that

d $(x_n, x) < \varepsilon / 2$ for all $n \ge n_1$ and d $(x_n, y) < \varepsilon / 2$ for all $n \ge n_2$. Let for all m be a positive integer such that for all $m \ge n_1, n_2$. Then

 $d(x, y) \leq d(x, x_m) + d(x_m, y)$ $< \varepsilon / 2 + \varepsilon / 2$ $= \varepsilon$ $\therefore d(x, y) < \varepsilon.$

Since $\varepsilon > 0$ is arbitrary, d(x, y) = 0.

 $\therefore x = y$.

Theorem 2.7

Let M be a metric space and $A \subseteq M$. Then

- (i) $x \in A$ iff there exists a sequence (x_n) in A such that $(x_n) \to x$.
- (ii) x is a limit point of A iff there exists a sequence (x_n) of distinct points in A such that $(x_n) \rightarrow x$.

Proof:

Let $x \in \overline{A}$ Then, $x \in A \cup D(A)$ (by the above theorem)

 $\therefore x \in A \text{ or } x \in D(A)$

If $x \in A$, then the constant sequence x, x, \dots Is a sequence in A converging to x.

If $x \in D(A)$ then the open ball B(x, 1/n) contains infinite number of points of A (by theorem)

 \therefore We can choose $x_n \in B(x, 1/n) \cap A$ such that $x_n \neq x_1, x_2, \dots, x_{n-1}$ for each n.

 \therefore (x_n) is a sequence of distinct points in A. Also $d(x_n, x) < \frac{1}{n}$ for all n.

$\therefore \lim_{x\to\infty} d(x_n, x) = \mathbf{0}.$

$$\therefore (x_n) \rightarrow x.$$

Conversely, suppose there exists a sequence (x_n) in A such that $(x_n) \rightarrow x$.

Then for any r > 0 there exists a positive integer n_0 such that $d(x_n, x) < r$ for all $n \ge n_0$.

 $\therefore x_n \in B(x, r)$ for all $n \ge n_0$.

 $\therefore B(x,r) \cap A \neq \phi$

 $\therefore x \in A$ (by corollary 2)

Further if (x_n) is a sequence of distinct points, $B(x, r) \cap A$ is infinite.

 $\therefore x \in D(A).$

 $\therefore x$ is a limit point of A.

Definition: Let (M, d) be a metric space. let (x_n) be a sequence of points in M. (x_n) is said to be a Cauchy sequence in M if given $\varepsilon > 0$ there exists a positive integer n_0 such that $d(x_m, x_n) < \varepsilon$ for all $m, n \ge n_0$.

Theorem 2.7:

Let (M, d) be a metric space. Then any convergent sequence in M is a Cauchy sequence.

Proof:

Let (x_n) be a convergent sequence of points in M converging to $x \in M$.

Let $\varepsilon > 0$ be given.

Then there exists a positive integer n_0 such that $(x_n, x) < \frac{1}{2}\varepsilon$ for all $n \ge n_0$.

Therefore, $d(x_n, x_m) \le d(x_n, x) + d(x, x_m)$

$$< rac{1}{2}arepsilon+rac{1}{2}arepsilon$$
 for all $m,n\geq n_0$

 $= \varepsilon$ for all $m, n \ge n_0$.

 $\therefore d(x_n, x_m) < \varepsilon$. for all $m, n \ge n_0$.

 \therefore (*x_n*) is a convergent sequence.

Note:

The converse of the above theorem is not true.

Definition:

A metric space M is said to be complete if every Cauchy sequence in M converges to a point in M.

Theorem 2.8: (Canton's Intersection Theorem)

Let M be a metric space. M is complete iff for every sequence (F_n) of nonempty closed subsets of M such that

 $F_1 \supseteq F_2 \supseteq \cdots \supseteq F_n \supseteq \cdots$ and $d((F_n)) \to 0$. $\bigcap n = 1^{\infty} F_n$ is nonempty. **Proof:**

Let **M** be a complete metric space.

Let (F_n) be a sequence of closed subsets of M such that

 $F_1 \supseteq F_2 \supseteq \cdots \supseteq F_n \supseteq \cdots$ -----(1)

and $d((F_n)) \to 0$. -----(2)

we claim that . $\bigcap_{n=1}^{\infty} F_n$ is nonempty.

For each positive integer n, choose a point $x_n \in F_n$.

By (1), x_n , x_{n+1} , x_{n+2} , all lies in F_n .

(i.e) $x_m \in F_n$ for all $m \ge n$ ------(3)

Since $(d(F_n)) \to 0$, given $\varepsilon > 0$, there exists a positive integer n_0 , such that $d(F_n) < \varepsilon$ for all $n \ge n_0$.

In particular $d(F_{n_0}) < \varepsilon$ ------(4)

 $\therefore d(x, y) < \varepsilon$ for all $x, y \in F_n$.

Now, $x_m \in F_{n_0}$ for all $m \ge n_0$. (by(3))

 $\therefore m, n \ge n_0 \Rightarrow x_m, x_n \in F_{n_0}.$

 $\Rightarrow d(x_m, x_n) < \varepsilon.$ (by(4))

 \therefore (x_n) is a Cauchy sequence in M.

Since **M** is complete there exists a point $x \in M$ such that $(x_n) \rightarrow x$.

We claim that $x \in \bigcap_{n=1} F_n$.

Now, for any positive integer n,

 $x_n, x_{n+1}, x_{n+2}, \dots$ is a sequence in F_n and this sequence

converges to x.

 $\therefore x \in F_n$ (by theorem 3.2)

But $\overline{F_n}$ is closed and hence $\overline{F_n} = F_n$.

 $\therefore x \in F_n.$ $\therefore x \in \bigcap_{n=1}^{\infty} F_n.$ $Hence \bigcap_{n=1}^{\infty} F_n \neq \phi.$ $Conversely let, (x_n) is a Cauchy sequence in$ **M**.

Let
$$F_1 = \{x_1, x_2, \dots, x_n, \dots\}$$

$$F_1 = \{x_2, x_3, \dots, x_n, \dots\}$$

....

....

 $F_n = \{x_n, x_{n+1}, x_{n+2}, \dots\}$

Clearly $F_1 \supseteq F_2 \supseteq \cdots \supseteq F_n \supseteq \cdots$

 $\therefore \bar{F}_1 \supseteq \bar{F}_2 \supseteq \cdots \supseteq \bar{F}_n \supseteq \cdots$

 $\therefore (\bar{k}_n)$ is a decreasing sequence of closed of closed sets.

Now, since (x_n) is a Cauchy sequence given $\varepsilon > 0$ there exists a positive integer n_0 , such that $d(x_m, x_n) < \varepsilon$ for all $m, n \ge n_0$.

 \therefore For any integer $n \ge n_0$, the distance between any two points of F_n is less than ε .

$$\therefore d(F_n) < \varepsilon \text{ for all } n \ge n_0$$

But $d(F_n) = d(F_n)$.
$$\therefore d(F_n) < \varepsilon \text{ for all } n \ge n_0 \dots (5)$$

$$(d(F_n)) \to 0.$$

Hence $\bigcap_{n=1}^{\infty} \overline{F_n}$ is nonempty
Let $x \in \bigcap_{n=1}^{\infty} \overline{F_n}$ Then x and $x_n \in \overline{F_n}$
$$\therefore d(x_n, x) \le d(\overline{F_n}).$$

$$\therefore d(x_n, x) < \varepsilon \text{ for all } n \ge n_0 (by(5))$$

$$\therefore (x_n) \to x.$$

$$\therefore M \text{ is complete.}$$

Definition:

A subset of a metric space *M* is said to be **nowhere dense** in *M* if $Int A = \phi$.

Definition:

A subset of a metric space M is said to be of **first category** in M if A can be expressed as a countable union of nowhere dense sets.

A set which is not of first category is said to be of **second category**.

Remark:

Let M be a metric space and $A \subseteq B$. Then the following are equivalent.

- (i) A is nowhere dense in M.
- (ii) A does not contain any non empty open set.
- (iii) Each non-empty open set has a non- empty open subset disjoint from \overline{A} .
- (iv) Each non empty open set has a non -empty open subset disjoint from A.
- (v) Each non empty open set contains an open sphere disjoint form A.

Theorem 2.9: (Baire's Category Theorem)

Any complete metric space is of second category.

Proof: Let *M* be a complete metric space.

Claim: *M* is not of first category.

Let (A_n) be a sequence of nowhere dense sets in M.

Since M is open and A_1 is nowhere dense, there exists an open ball say B_1 of radius less than 1 such that B_1 is disjoint from A_1 . (since by above remark).

Let F_1 denote the concentric closed ball whose radius is $\frac{1}{2}$ times that of B_1 .

Now, Int F_1 is open and A_2 is nowhere dense.

 \therefore Int F1 contains an open ball B2 of radius less than 1/2 such that B2 is disjoint from A2.

Let F_2 be a concentric closed ball whose radius is

 A_3 is nowhere dense.

 \therefore Int F2 contains an open ball B2 of radius less than 1/2 such that B3 is disjoint from A3.

Let F_3 be a concentric closed ball whose radius is 1/2 times that of B_3 . Proceeding like this we get a sequence of nonempty closed balls F_n such that

 $F_1 \supseteq F_2 \supseteq \cdots \supseteq F_n \supseteq \cdots$ and $d(F_n) < 1/2^n$

Hence $(d(F_n)) \rightarrow 0$ as $n \rightarrow \infty$.

Since *M* is complete, by Cantor 's intersection theorem, there exists a point *x* in *M* such that $x \in \bigcap_{n=1}^{\infty} F_n$.

Also each F_n is disjoint from A_n .

Hence, $x \notin F_n$ for all n.

 $\therefore x \notin \bigcup_{n=1}^{\infty} A_n.$

 $\therefore \bigcup_{n=1}^{\infty} A_n \neq M$. Hence *M* is of second category.

Corollary: *R* is of second category.

<u>UNIT - III</u> <u>COUNTINUITY</u>

Definition:

let (M_1, d_1) and (M_2, d_2) be metric spaces.

Let $f: M_1 \to M_2$ be a function. Let $a \in M_1$ and $l \in M_2$. The function f is said to have a **limit** as $x \to a$ if given $\varepsilon > 0$, there exists $\delta > 0$ such that,

 $0 < d_1(x, a) < \delta \Rightarrow d_2(f(x), l) < \varepsilon.$

We write $\lim_{x \to a} f(x) = l$.

Definition:

Let(M_1 , d_1) and (M_2 , d_2) be metric spaces. Let $a \in M_1$. A function $f: M_1 \rightarrow M_2$ is said to be **continuous** at a if given $\varepsilon > 0$, there exists $\delta > 0$ such that,

 $d_1(x, a) < \delta \Rightarrow d_2(f(x), f(a)) < \varepsilon.$

f is said to be **continuous** if its continuous at every point of M_1 .

Note:1

f is continuous at a iff $\lim_{x \to a} f(x) = f(a)$.

Note:2

The condition $d_1(x, a) < \delta \Rightarrow d_2(f(x), f(a)) < \varepsilon$ can be rewritten as

- (i) $x \in B(x, \delta) \Rightarrow f(x) \in B(f(a), \varepsilon)$ or
- (ii) $f(B(a, \delta)) \subseteq B(f(a), \varepsilon).$

Theorem 3.1:

Let (M_1, d_1) and (M_2, d_2) be metric spaces. Let $a \in M_1$. A function $f: M_1 \to M_2$ is continuous at a iff $(x_n) \to a \Rightarrow (f(x_n)) \to f(a)$. **Proof:** Suppose f is continuous at a. Let (x_n) be a sequence in M_1 such that $(x_n) \to a$. **Claim:** $(f(x_n)) \to f(a)$. Let $\varepsilon > 0$ be given. By definition of continuity, there exists $\delta > 0$ such that, $d_1(x, a) < \delta \Rightarrow d_2(f(x), f(a)) < \varepsilon$. -------(1) Since $(x_n) \to a$, there exists a positive integer n_0 such that $d_1(x_n, a) < \delta$ for all $n \ge n_0$. $\therefore d_2(f(x), f(a)) < \varepsilon$ for all $n \ge n_0$. (by(1)) $\therefore (f(x_n)) \to f(a)$. Conversely, suppose $(x_n) \to a \Rightarrow (f(x_n)) \to f(a)$. **Claim:** f is continuous at a. Suppose f is not continuous at a. Then there exists an $\varepsilon > 0$ such that for all $\delta > 0$, $f(B(a, \delta)) \notin B(f(a), \varepsilon)$ In particular, $f(B(a, \frac{1}{n})) \not\subset B(f(a), \varepsilon)$. Choose x_n such that $x_n \in B(a, \frac{1}{n})$ and $(x_n) \notin B(f(a), \varepsilon)$. $\therefore d_1(x_n, a) < \frac{1}{n}$ and $d_2(f(x), f(a)) \ge \varepsilon$. $(x_n) \to a$ and $(f(x_n))$ not converges to f(a) which is a contradiction to the hypothesis. Hence, f is continuous at a. **Corollary 1:** A function $f: M_1 \to M_2$ is continuous at a iff $(x_n) \to x \Rightarrow (f(x_n)) \to f(x)$.

Theorem 3.2:

Let (M_1, d_1) and (M_2, d_2) be metric spaces. $f: M_1 \rightarrow M_2$ is continuous iff $f^{-1}(G)$ is open in M_1 whenever G is open in M_2 .

(i.e) f is continuous iff inverse image of every open set is open.

Proof:

Suppose f is continuous

Let G be an open set in M_2 .

Claim: $f^{-1}(G)$ is open in M_2 .

If $f^{-1}(G)$ is empty, then it is open. Let $f^{-1}(G) \neq \phi$.

Let $x \in f^{-1}(G)$. Hence $f(x) \in G$.

Since *G* is open, there exists an open ball $B(f(x), \varepsilon)$ such that $B(f(x), \varepsilon) \subseteq G$.

Now, by definition of continuity, there exists an open ball $B(x, \delta)$ such that $f(B(x, \delta)) \subseteq B(f(x), \varepsilon)$.

 $\therefore f(B(x,\delta)) \subseteq G \quad (by(1))$

$$\therefore B(x,\delta) \subseteq f^{-1}(G)$$

Since $x \in f^{-1}(G)$ is arbitrary, $f^{-1}(G)$ is open.

Conversely, suppose $f^{-1}(G)$ is open in M_1 whenever G is open in M_2 .

we claim that f is continuous.

Let $x \in M_1$.

Now, $B(f(x), \varepsilon)$ is an open set in M_2 .

∴ $f^{-1}(B(f(x), \varepsilon))$ is open in M_1 and $x \in f^{-1}(B(f(x), \varepsilon))$.

Therefore there exists $\delta > 0$ such that $B(x, \delta) \subseteq f^{-1}(B(f(x), \varepsilon))$.

 $\therefore f(B(x,\delta)) \subseteq (B(f(x),\varepsilon).$

 \therefore *f* is continuous at *x*.

Since $x \in M_1$ is arbitrary f is continuous.

Theorem 3.3:

Let (M_1, d_1) and (M_2, d_2) be two metric spaces. A function $f: M_1 \rightarrow M_2$ is continuous iff $f^{-1}(F)$ is closed in M_1 whenever F is closed in M_2 .

Proof: Suppose $f: M_1 \rightarrow M_2$ is continuous.

Let $F \subseteq M_2$ be closed in M_2 .

 \therefore *F*^{*c*} is open in *M*₂.

 $\therefore f^{-1}(F^c)$ is open in M_1 .

Conversely, suppose $f^{-1}(F)$ is closed in M_1 whenever F is closed in M_2 .

We claim that f is continuous.

Let G be an open set in M_2 .

 \therefore *G*^{*c*} is open in *M*₂.

 $\therefore f^{-1}(G^c)$ is closed in M_1 .

 $\therefore [f^{-1}(G)]^c$ is closed in M_1 .

 $\therefore f^{-1}(G)$ is open in M_1 .

 \therefore *f* is continuous.

Theorem 3.4:

Let (M_1, d_1) and (M_2, d_2) be two metric spaces. A function $f: M_1 \to M_2$ is continuous iff $f(A) \subseteq f(\overline{A})$ for all $A \subseteq M_1$.

Proof:

Suppose f is continuous.

Let $A \subseteq M_1$. Then $f(A) \subseteq M_2$. Since f is continuous, $f^{-1}(\overline{f(A)})$ is closed in M_1 Also $f^{-1}(\overline{f(A)}) \supseteq A$ (since $\overline{f(A)} \supseteq f(A)$)

But A is the smallest closed set containing A.

$$\therefore \bar{A} \subseteq f^{-1}(\overline{f(A)}) \therefore f(A) \subseteq \overline{f(A)}$$

Conversely, let $f(\overline{A}) \subseteq \overline{f(\overline{A})}$ for all $A \subseteq M_1$.

To prove: *f* is continuous.

We shall show that if F is a closed set in M_2 , then $f^{-1}(F)$ is closed in M_1 .

By hypothesis, $f(\overline{f^{-1}(F)}) \subseteq \overline{ff^{-1}(F)}$ $\subseteq \overline{F}$ = F. (since F is closed.) Thus $f(\overline{f^{-1}(F)}) \subseteq F$. $\therefore \overline{f^{-1}(F)} \subseteq f^{-1}(F)$ Also $f^{-1}(F) \subseteq \overline{f^{-1}(F)}$. $f^{-1}(F) = \overline{f^{-1}(F)}$ Hence $f^{-1}(F)$ is closed. $\therefore f$ is continuous.

3.2 Homeomorphism

Definition: Let (M_1, d_1) and (M_2, d_2) be two metric spaces. A function $f: M_1 \rightarrow M_2$ is called a **homeomorphism** if

(i) f is 1-1 and onto.

(ii) f is continuous.

(iii) f^{-1} is continuous.

 M_1 and M_1 are said to be homeomorphic if there exists a homeomorphism $f: M_1 \rightarrow M_2$.

Definition: A function $f: M_1 \rightarrow M_2$ is said to be an open map if f(G) is open in M_2 for every open set G in M_1 .

(i.e) f is an open map if the image of an open set in M_1 is an open set in M_2 .

f is called a closed map if f(F) is closed in M_2 for every closed set F in M_1 .

Note: Let $f: M_1 \rightarrow M_2$ be a 1-1 onto function. Then f^{-1} is continuous iff f is an open map.

For, f^{-1} is continuous iff for any open set G in $M_1(f^{-1})^{-1}(G)$ is open in M_2 .

But, $(f^{-1})^{-1}(G) = f(G)$.

 $\therefore f^{-1}$ is continuous iff for every open set G in M_1 , f(G) is open in M_2 .

 $\therefore f^{-1}$ is continuous iff f is an open map.

Note: Similarly f^{-1} is continuous iff f is a closed map.

Note: Let $f: M_1 \rightarrow M_2$ be a 1-1 onto map. Then the following are equivalent.

- (i) f is homeomorphism.
- (ii) f is continuous open map.
- (iii) f is continuous closed map.

Proof:

(i)⇔(ii) follows from Note1 and the definition of homeomorphism.

(i)) \Leftrightarrow (iii) follows from Note2 and the definition of homeomorphism.

Note: Let $f: M_1 \rightarrow M_2$ be a homeomorphism. $G \subseteq M_1$ is open in M_1 iff f(G) is open in M_2 .

Note: Let $f: M_1 \rightarrow M_2$ be a 1-1 onto map. Then f is a homeomorphism iff it satisfies the following condition.

F is closed in M_1 iff f(F) is closed in M_2 .

3.3 Uniform Continuity

Definition : Let(M_1 , d_1) and (M_2 , d_2) be two metric spaces. A function $f: M_1 \rightarrow M_2$ is said to be uniformly continuous on M_1 if given > 0, there exists $\delta > 0$ such that,

 $d_1(x, y) < \delta \Rightarrow d_2(f(x), f(y)) < \varepsilon.$

Problem 3.5: Prove that $f: [0,1] \rightarrow \mathbf{R}$ defined by $f(x) = x^2$ is uniformly continuous on [0,1].

Solution:

Let $\varepsilon > 0$ be given. Let $x, y \in [0,1]$. Then $|f(x) - f(y)| = |x^2 - y^2| = |x + y||x - y|$ $\leq 2|x - y|$ (since $x \leq 1$ and $y \leq 1$) $\therefore |x - y| < \frac{1}{2}\varepsilon \Rightarrow |f(x) - f(y)| < \varepsilon$.

 $\therefore f$ is uniformly continuous on[0,1].

Problem 3.6: Prove that the function $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = sin x is uniformly continuous on \mathbb{R} .

Solution:

Let $x, y \in \mathbf{R}$ and x > y. sin x - siny = (x - y)cos z where x > z > y (by mean value theorem) $\therefore |sin x - sin y| = |x - y||cos z|$ $\leq |x - y|$ (since $|cos z| \leq 1$). Hence for a given > 0, we choose $\delta = \varepsilon$, we have $|x - y| < \delta \Longrightarrow |f(x) - f(y)| =$

 $|\sin x - \sin y| < \varepsilon.$

 $\therefore f(x) = \sin x$ is uniformly continuous on **R**.

3.4 Discontinuous functions on r

Definition: A function $f: \mathbb{R} \to \mathbb{R}$ is said to approach to a **limit** l as x tends to a if given > 0, there exists $\delta > 0$ such that

 $0 < |x - a| < \delta \Rightarrow |f(x) - l| < \varepsilon$ and we write $\lim_{x \to a} f(x) = l$.

Definition: A function f is that to have l as the **right limit** at x = a if given $\varepsilon > 0$, there exists

 $\delta > 0$ such that $a < x < a + \delta \Rightarrow |f(x) - l| < \varepsilon$ and we write $\lim_{x \to a^+} f(x) = l$.

Also we denote the right limit l by f(a +).

A function f is that to have l as the **left limit** at x = a if given > 0, there exists $\delta > 0$ such that $a - \delta < x < a \Rightarrow |f(x) - l| < \varepsilon$ and we write $\lim_{x \to a} f(x) = l$.

Also we denote the right limit l by f(a -).

Note: $\lim_{x \to a} f(x) = liff \lim_{x \to a+} f(x) = \lim_{x \to a-} f(x) = l.$

(i.e.) $\lim_{x \to a} f(x)$ exists iff the left and right limits of f(x) at x = a exists and are equal.

Note: The definition of continuity of f at x = a can be formulated as follows.

f is continuous at at a iff f(a +) = f(a -) = f(a).

Note: If $\lim_{x \to a} f(x)$ does not exists then one of the following happens.

- (i) $\lim_{x \to a^+} f(x)$ does not exists.
- (ii) $\lim_{x \to a^{-}} f(x)$ does not exists.
- (iii) $\lim_{x \to a^-} f(x)$ and $\lim_{x \to a^+} f(x)$ exist and are unequal.

Definition: If a function f is discontinuous at *a* then *a* is called a point of discontinuity for the function.

If *a* is a point of discontinuity of a function then any one of the following cases arises.

- (i) $\lim_{x \to a} f(x)$ exists but is not equal to f(a).
- (ii) $\lim_{x \to a^-} f(x)$ and $\lim_{x \to a^+} f(x)$ exist and are not equal.
- (iii) Either $\lim_{x \to a^-} f(x)$ or $\lim_{x \to a^+} f(x)$ does not exist.

Definition: let *a* be a point of discontinuity for f(x). *a* is said to be a point of discontinuity of the first kind if $\lim_{x \to a^{-}} f(x)$ and $\lim_{x \to a^{+}} f(x)$ exist and both of them are finite and unequal. *a* is said to be a point of discontinuity of the second kind if either $\lim_{x \to a^{-}} f(x)$ or $\lim_{x \to a^{+}} f(x)$ are does not exist.

Definition:Let $A \subseteq R$. Afunction $f: A \to \mathbf{R}$ is called monotonic increasing if $x, y \in A$ and $x < y \Rightarrow f(x) \le f(y)$.

f is called monotonic decreasing if x, $y \in A$ and $x > y \Rightarrow f(x) \ge f(y)$.

f is called monotonic if it is either monotonic increasing or monotonic decreasing.

Theorem 3.7:

Let $f: [a, b] \to \mathbf{R}$ be a **monotonic increasing function.** Then has a left limit and right limit at every point (a,b). Also f has a right limit at a and f has a left limit at b. Further $x < y \Rightarrow f(x+) \le f(y-)$.

Similar result is true for monotonic decreasing function.

Proof:

Let $f: [a, b] \rightarrow R$ be a monotonic increasing function.

Let $x \in [a,b]$. then $\{ f(t)/a \le t < x \}$ is bounded above by f(x). Let $l = l. u. b\{f(t) | a \le t < x\}$ Claim: f(x-) = lLet $\varepsilon > 0$ be given .By definition l. u. b there exists t such that $a \le t < x$ and $l - \varepsilon < f(t) \le t \le x$ l Therefore $t < u < x \Rightarrow l - \varepsilon < f(t) \le f(u) \le l$ (since f is monotonic increasing) $\Rightarrow l - \varepsilon < f(u) \le l$ $\therefore x - \delta < u < x \Rightarrow l - \varepsilon < f(u) \le l$ where $\delta = x - t$ $\therefore \mathbf{f}(\mathbf{x}-) = \mathbf{l}$ Similarly we can prove that f(x+) = g. *l*. $b\{f(t)/x < t \le b\}$ To Prove : $x < y \Rightarrow f(x+) \le f(y-)$ Let x < yNow, $f(x+) = g. l. b\{f(t)/x < t \le b\}$ $= g. l. b\{f(t)/x < t \le y\}$ (since *f* is monotonic increasing) Also, $f(y-) = l. u. b\{f(t)/a \le t < y\}$ $= l. u. b\{f(t) | x \le t < y\}$ $f(x+) \leq f(y-)$ The proof of monotonic decreasing function is similar.

Theorem 3.8:

Let $f: [a, b] \rightarrow R$ be a monotonic function. Then the set of points of [a,b] at which f is discontinuous is countable.

Proof:

Let $E = \{x/x \in [a, b] \text{ and } f \text{ is discontinuous at } x\}$

Let $x \in E$. then by previous theorem,

$$f(x+)$$
 and $f(x-)$ exists and $f(x-) \le f(x) \le f(x+)$
If $f(x-) = f(x+)$ then $f(x-) = f(x) = f(x+)$

 \therefore *f* is continuous at *x* which is a contradiction.

$$\therefore f(x-) \neq f(x+)$$

$$\therefore f(x-) < f(x+)$$

Now choose a rational number r(x) such that f(x-) < r(x) < f(x+).

This define a map r from E to Q which maps x to r(x).

Claim: *r* is 1-1

Let $x_1 < x_2$

 $\therefore f(x_1+) < f(x_2-)$ (by previous theorem)

Also,
$$f(x_1-) < r(x_1) = f(x_1+)$$

And $f(x_2-) < r(x_2) = f(x_2+)$.

$$\therefore r(x_1) < f(x_2 +) < f(x_2 -) < r(x_2).$$

Thus $x_1 < x_2 \Rightarrow r(x_1) < r(x_2)$.

Therefore, $r: E \rightarrow Q$ is 1-1. Hence E is countable

<u>UNIT - IV</u> CONNECTEDNESS

Definition: Let (M, d) be a metric space. *M* is said to be **connected** if *M* cannot be represented as the union of two disjoint nonempty open sets.

If *M* is not connected it is to be **disconnected**.

Example: Let $M = [1,2] \cup [3,4]$ with usual metric. Then M is disconnected.

Proof:

[1,2]and[3,4] are open in *M*.

Thus, M is the union of two disjoint nonempty open dets namely [1,2] and [3,4]. Hence M is disconnected.

Theorem 4.1:

Let (M, d) be a metric space. Then the following are equivalent.

i) M is connected.

ii) *M* cannot be written as the union of two disjoint nonempty closed sets.

iii) *M* cannot be written as the union of two nonempty sets *A* and *B* such that $A \cap B = A \cap$

 $B = \phi$.

iv) *M* and ϕ are the only sets which are both open and closed in *M*.

Proof:

(i)⇒(ii)

Suppose (ii) is true.

```
\therefore M = A \cup B where A and B are closed A \neq \phi, B \neq \phi and A \cap B = \phi.
```

 $\therefore A^c = B \text{ and } B^c = A.$

Since A and B are closed, A^c and B^c are open.

 \therefore BandA are open.

Thus M is the union of two disjoint nonempty open sets.

 \therefore *M* is not connected which is a contradiction.

∴ (i)⇒(ii)

(ii) ⇒(iii)

Suppose (iii) is not true.

Then $M = A \cup B$ where $A \neq \phi$, $B \neq \phi$ and $A \cap B = A \cap B = \phi$.

Claim: *A* and *B* are closed.

Let $x \in A$.

 $\therefore x \notin B \qquad (since A \cap B = \phi)$ $\therefore x \in A \qquad (since A \cup B = M)$ $A \subseteq A.$ But $A \subseteq A$. $\therefore A = A and hence A is closed.$ Similarly B is closed. Now, $A \cap B = A \cap B$. (since A = A). $=\phi$. Thus $M = A \cup B$ where $A \neq \phi$, $B \neq \phi$, A and B are closed and $A \cap B = \phi$ which is contradiction to (ii). ∴(ii)⇒(iii) (iii) ⇒(iv) Suppose (iv) is not true. Then there exists $A \subseteq M$ such that $A \neq M$ such that $A \neq M$ and $A \neq \phi$ and A is both open and closed. Let $B = A^c$. Then *B* is also both open and closed and $B \neq \phi$. Also $M = A \cup B$. Further $A \cap B = A \cap A^c$. (since A = A and $A = A^c$) $= \phi$. Similarly $A \cap B = \phi$. $\therefore M = A \cup B$ where $A \cap B = \phi = A \cap B$ which is a contradiction to (iii). ∴(iii)⇒(iv). $(iv) \Rightarrow (i).$ Suppose *M* is not connected. \therefore *M* = *A* \cup *B* where *A* $\neq \phi$, *B* $\neq \phi$, *A* and *B* are open and *A* \cap *B* = ϕ . Then $B^c = A$. Now, since *B* is open *A* is closed. Also $A \neq \phi$ and $A \neq M$. (since $B \neq \phi$) \therefore A is a proper non empty subset of M which is both open and closed which is a contradiction to (iv). ∴ (iv))⇒(i).

Theorem 4.2

A metric space M is connected iff there does not exist a continuous function f from M onto the discrete metric space $\{0,1\}$.

Proof: Suppose there exists a continuous function f from M onto $\{0,1\}$.

Since $\{0,1\}$ is discrete, $\{0\}$ and $\{1\}$ are open.

 $\therefore A = f^{-1}(\{0\})$ and $B = f^{-1}(\{1\})$ are open in M.

Since *f* is onto, *A* and *B* are non empty.

Clearly $A \cap B = \phi$ and $A \cup B = M$.

Thus $M = A \cup B$ where A and B are disjoint nonempty open sets.

 \therefore *M* is not connected which is a contradiction.

Hence there does not exist a continuous function from onto the discrete metric space $\{0,1\}$. Conversely, suppose *M* is not connected.

Then, there exists a disjoint nonempty open sets A and B in M such that $M = A \cup B$.

Now, define $f: M \to \{0,1\}$ by $f(x) = \begin{cases} 0 & \text{if } x \in A \\ 1 & \text{if } x \in B \end{cases}$

Clearly f is onto.

Also, $f^{-1}(\phi) = \phi$, $f^{-1}(\{0\}) = a$, $f^{-1}(\{1\}) = B$ and $f^{-1}(\{0,1\}) = M$. Thus the inverse image of every open set in $\{0,1\}$ is open in M. Hence f is continuous.

Thus there exists a continuous function f from M onto $\{0,1\}$.which is a contradiction. Hence M is not connected.

Problem 4.3:

Let *M* be a metric space. Let *A* be a connected subset of *M*. If *B* is a subset of of *M* such that $A \subseteq B \subseteq A$ then *B* is connected. In particular *A* is connected.

Solution: Suppose *B* is not connected.

Then $B = B_1 \cup B_2$ where $B_1 \neq \phi$, $B_2 \neq \phi$, $B_1 \cap B_2 = \phi$ and B_1 and B_2 are open in B. Now, since B_1 and B_2 are open sets in B there exists open sets G_1 and G_2 in M such that $B_1 = G_1 \cap B$ and $B_2 = G_2 \cap B$. $\therefore B = B_1 \cup B_2 = (G_1 \cap B) \cup (G_2 \cap B) = (G_1 \cup G_2) \cap B$.

 $\therefore B \subseteq G_1 \cup G_2.$ $\therefore A \subseteq G_1 \cup G_2$ (since $A \subseteq B$) $\therefore A = (G_1 \cup G_2) \cap A.$ $= (G_1 \cap A) \cup = (G_1 \cap A).$ Now, $G_1 \cap A$ and $G_2 \cap A$ are open in A. Further, $(G_1 \cap A) \cup (G_2 \cap A) = (G_1 \cup G_2) \cap A$. $= (G_1 \cup G_2) \cap B$ (since $A \subseteq B$) $= (G_1 \cap B) \cap (G_2 \cap B)$ $= B_1 \cap B_2.$ $=\phi$. $\therefore (G_1 \cap A) \cup (G_2 \cap A) = \phi.$ Now, since *A* is connected, either $G_1 \cap A = \phi$ or $G_2 \cap A = \phi$. Without loss of generality let us assume that $G_1 \cap A = \phi$. Since G_1 is open in M, we have $G_1 \cap A = \phi$. $\therefore G_1 \cap B = \phi.$ (since $B \subseteq \overline{A}$) $\therefore B_1 = \phi$ which is a contradiction. Hence *B* is not connected.

4.2 Connected Subsets of R

Theorem 4.4: A subspace of *R* is connected iff it is an interval. Proof: Let *A* be a connected subset of *R*. Suppose *A* is not an interval.

Then there exists $a, b, c \in \mathbf{R}$ such that, a < b < c and $a, c \in A$ but $b \notin A$.

Let $A_1 = (-\infty, b) \cap A$ and $A_2 = (b, \infty) \cap A$.

Since $(-\infty, b)$ and (b, ∞) are open in **R**, A_1 and A_2 are open sets in A.

Also, $A_1 \cap A_2 = \phi$ and $A_1 \cup A_2 = A$.

Further $a \in A_1$ and $c \in A_2$.

Hence $A_1 \neq \phi$ and $A_2 \neq \phi$.

Thus A is the union of two disjoint nonempty open sets A_1 and A_2 .

Hence A is not connected which is a contradiction.

Hence A is an interval.

Conversely, let A be an interval.

Claim:*A* is connected.

Suppose *A* is not connected.

Let $A = A_1 \cup A_2$ where $A_1 \neq \phi$, $A_2 \neq \phi$, $A_1 \cap A_2 = \phi$ and A_1 and A_2 are closed in A.

Choose $x \in A_1$ and $z \in A_2$.

Since $A_1 \cap A_2 = \phi$ we have $x \neq z$.

Without loss of generality let us assume that x < z.

Now, since A is an interval we have $[x, z] \subseteq A$.

(i.e) $[x, z] \subseteq A_1 \cup A_2$.

 \therefore Every element of [x, z] is either in A_1 or in A_2 .

Now, let $y = l. u. b. \{[x, z] \cap A_1\}.$

Clearly $x \le y \le z$.

Hence $y \in A$.

Let $\varepsilon > 0$ be given. Then by the definition of l. u. b. there exists $t \in [x, z] \cap A_1$ such that $y - \varepsilon < t \le y$.

 $\therefore (y - \varepsilon, y + \varepsilon) \cap ([x, z] \cap A_1) \neq \phi.$

 $\begin{array}{l} \therefore y \in [x, z] \cap A_{1} \\ \therefore y \in [x, z] \cap A_{1} \\ \therefore y \in A_{1}. \end{array}$ Again by the definition of $y, y + \varepsilon \in A_{2}$ for all $\varepsilon > 0$ such that $y + \varepsilon \leq z$. $\begin{array}{l} \therefore y \in A_{2}^{-} \\ \therefore y \in A_{2}^{-} \\ \therefore y \in A_{2} \end{array} \quad (since A_{2} \text{ is closed}) \\ \therefore y \in A_{1} \cap A_{2} [\text{ by(1) and (2) }] \text{ which is a contradiction since } A_{1} \cap A_{2} = \phi. \end{array}$ Hence A is connected.

Theorem 4.5:

R is connected. **Proof:** $R = (-\infty, \infty)$ is an interval. \therefore **R** is connected.

4.3 Connectedness and Continuity Theorem 4.6:

Let M_1 be a connected metric space. Let M_2 be any metric space. Let $f: M_1 \rightarrow M_2$ be a continuous function. Then $f(M_1)$ is a connected subset of M_2 .

(i.e) Any continuous image of a connected set is connected.

Proof:

Let $f(M_1) = A$ so that f is function on M_1 onto A.

Claim:*A* is connected.

Suppose A is not connected. Then there exists a proper non empty subset of B of A which is both open and closed in A.

 $\therefore f^{-1}(B)$ is a proper nonempty subset of M_1 which is both open and closed in M_1 .

Hence M_1 is not connected which is contradiction.

Hence A is connected.

Theorem 4.7: Intermediate value theorem

Let f be a real valued continuous function defined on an interval I. Then f takes every value between any two values it assumes

Proof:

Let $a, b \in I$ and $f(a) \neq f(b)$. Without loss of generality we assume that f(a) < f(b). Let c be such that f(a) < c < f(b). The interval I is a connected subset of \mathbf{R} . $\therefore f(I)$ is a connected subset of \mathbf{R} . (by theorem 4.6) $\therefore f(I)$ is an interval. (by theorem 4.6) Also $f(a), f(b) \in f(I)$. Hence $[f(a), f(b)] \subseteq f(I)$. $\therefore c \in f(I)$ (since f(a) < c < f(b)) $\therefore c = f(x)$ for some $x \in I$.

4.2 Compact Metric Spaces

Definition: Let *M* be a metric space. A family of open sets $\{G_{\alpha}\}$ in *M* is called an open cover for *M* if $\bigcup G_{\alpha} = M$.

A subfamily of $\{G_{\alpha}\}$ which itself is an open cover is called a **subcover**.

A metric space M is said to be **compact** if every open cover for M has finite subcover.

(i.e) for each family of open sets $\{G_{\alpha}\}$ such that $\bigcup G_{\alpha} = M$, there exists a finite subfamily $\{G_{\alpha}, G_{\alpha}, \dots, G_{\alpha}\}$ such that $\bigcup_{i=1}^{n} G_{\alpha} = M$.

Theorem 4.8:

Let *M* be a metric space. Let $A \subseteq M$. Ais compact iff given a family of open sets $\{G_{\alpha}\}$ in *M* such

that $\bigcup G_{\alpha} \supseteq A$ there exists a subfamily $G_{\alpha}, G_{\alpha}, \dots, G_{\alpha}$ such that $\bigcup_{i=1}^{n} G_{\alpha} \subseteq A$.

Proof:

Let A be a compact subset of M.

Let $\{G_{\alpha}\}$ be a family of open sets in M such that $\cup G_{\alpha} \supseteq A$.

Then $(\cup G_{\alpha}) \cap A = A$. $:\cup (G_{\alpha} \cap A) = A.$ Also $G_{\alpha} \cap A$ is open in A. ∴ The family { $G_{\alpha} \cap A$ } is an open cover for A. Since A is compact this open cover has a finite subcover, say, $G_{\alpha_1} \cap A$, $G_{\alpha_2} \cap A$,, $G_{\alpha_n} \cap A$. $\therefore \bigcup_{i=1}^{n} (G_{\alpha_i} \cap A) = A.$ $\therefore (\bigcup_{i=1}^n G_{\alpha_i}) \cap A = A.$ $\therefore \bigcup_{i=1}^{n} G_{\alpha_i} \subseteq A.$ Conversely let $\{H_{\alpha}\}$ be an open cover for *A*. \therefore Each H_{α} is open in A. \therefore $H_{\alpha} = G_{\alpha} \cap A$ where G_{α} is open in M. Now, $\cup H_{\alpha} = A$. $\therefore \cup (G_{\alpha} \cap A) = A.$ $\therefore (\cup G_{\alpha}) \cap A = A.$ $\therefore \bigcup G_{\alpha} \supseteq A$. Hence by hypothesis there exists a finite subfamily $G_{\alpha}, G_{\alpha}, \dots, G_{\alpha}$ such that $\bigcup_{i=1}^{n} G_{\alpha} \subseteq A$. $\therefore (\bigcup_{i=1}^n G_{\alpha_i}) \cap A = A.$ $\therefore \bigcup_{i=1}^{n} (G_{\alpha_i} \cap A) = A.$ $\therefore \bigcup_{i=1}^{n} H_{\alpha_i} = A.$ Thus $\{H_{\alpha_1}, H_{\alpha_2}, \dots, H_{\alpha_n}\}$ is a finite subcover of the open cover $\{H_{\alpha}\}$.

 \therefore Ais compact.

Theorem 4.9:

Any compact subset A of a metric space M is bounded.

Proof:

Let $x_0 \in A$. Consider $\{B(x_0, n) | n \in N\}$. Clearly $\bigcup_{i=1}^n B(x_0, n) = M$. $\therefore \bigcup_{i=1}^n B(x_0, n) \supseteq A$. Since A is compact there exists a finite subfamily say, $B(x_0, n_1)$, $B(x_0, n_2)$, ..., $B(x_0, n_k)$ such that $\bigcup_{i=1}^{k} B(x_0, n_1) \supseteq A$. Let $n_0 = \max\{n_1, n_2, \dots, n_k\}$. Then $\bigcup_{i=1}^{k} B(x_0, n_i) = B(x_0, n_0).$ $\therefore B(x_0, n_0) \supseteq A.$ We know that $B(x_0, n_0)$ is a bounded set and a subset of a bounded set is bounded. Hence A is bounded.

Theorem 4.10:

Any compact subset A of a metric space (M, d) is closed. **Proof:**

To prove: *A* is closed. We shall prove that *A*^{*c*} is open.

Let $y \in A^c$ and let $x \in A$. Then $x \neq y$.

$$\therefore d(x, y) = r_x > 0.$$

It can be easily verified that $B(x, \frac{1}{2}r_x) \cap B(y, \frac{1}{2}r_x) = \phi$.

Now consider the collection $\{B(x, \frac{1}{2}r_x) | x \in A\}$.

Clearly $\bigcup_{x \in A} B(x, \frac{1}{2}r_x) \supseteq A$.

Since A is compact there exists a finite number of such open balls say, $B(x, \stackrel{1}{,} \stackrel{r}{,} r), \dots, B(x, \stackrel{1}{,} r)$ such that $\bigcup_{i=1}^{n} B(x, \stackrel{1}{,} r) \supseteq A$. ------(1) Now, let $V = \bigcap_{i=1}^{n} B(y, \stackrel{1}{,} r)$.

Since $B(y, \frac{1}{2}r_y) \cap (x, \frac{1}{2}r_x) = \phi$, we have $V_y \cap B(x, \frac{1}{2}r_{x_i}) = \phi$ for each i = 1, 2, ..., n. $\therefore V \cap [\bigcup_{i=1}^n B(x, \frac{1}{2}r_i)] = \phi$. $\therefore V_y \cap A = A$ $\therefore V_y \cap A = \phi.$ (by (1)). $\therefore V_{\gamma} \subseteq A^{c}$. $\therefore \bigcup_{y \in A^c} V_y = A^c$ and each V_y is open.

 $\therefore A^c$ is open. Hence A is closed.

Theorem 4.11:

A closed subspace of a compact metric space is compact.

Proof:

Let *M* be a compact metric space.

Let A be a nonempty closed subset of M.

Claim:*A* is compact.

Let $\{G_{\alpha} \mid \alpha \in I\}$ be a family of open sets in *M* such that, $\bigcup_{\alpha \in I} G_{\alpha} \supseteq A$.

 $\therefore A^c \cup [\bigcup_{\alpha \in I} G_\alpha] = M.$

Also A^c is open. (since A is closed).

∴ { $G_{\alpha}/\alpha \in I$ } ∪ { A^c }is an open cover for M.

Since *M* is compact it has a finite subcover say, $G_{\alpha_1} G_{\alpha_2} \dots \dots G_{\alpha_h} A^c$.

$$\therefore (\bigcup_{i=1}^n G_{\alpha_i}) \cup A^c = M.$$

 $\therefore \bigcup_{i=1}^{n} G_{\alpha_i} \supseteq A.$

 $\therefore A$ is compact.

4.3 Compact Subsets of *R*.

Theorem 4.12: Heine-Borel Theorem

Any closed interval [a, b] is a compact subset of \mathbf{R} . **Proof:** Let $\{G_{\alpha} / \alpha \in I\}$ be a family of open sets in \mathbf{R} such that $\bigcup_{\alpha \in I} G_{\alpha} \supseteq [a, b]$. Let $S = \{x | x \in [a, b] \text{ and } [a, x] \text{ can be covred by a finite number of } G' \text{ s}_{d}^{2}$.

Clearly $a \in S$ and hence $S \neq \phi$.

Also S is bounded above by b.

Let *c* denote the *l*. *u*. *b*.of *S*.

Clearly $c \in [a, b]$.

 $\therefore c \in G_{\alpha_1}$ for some $\alpha_1 \in I$.

Since G_{α_1} is open, there exists $\varepsilon > 0$ such that $(c - \varepsilon, c + \varepsilon) \subseteq G_{\alpha_1}$.

Choose $x_1 \in [a, b]$ such that $x_1 < c$ and $[x_1, c] \subseteq G_{\alpha_1}$.

Now, since $x_1 < c$, $[a, x_1]$ can be covered by a finite number of G_{a} 's.

```
These finite number of G_{\alpha}'s together with G_{\alpha_1} covers [a, c].
```

 \therefore By definition of *S*, $c \in S$.

Now, we claim that c = b.

Suppose $c \neq b$.

Then choose $x_2 \in [a, b]$ such that $x_2 > c$ and $[c, x_2] \subseteq G_{\alpha_1}$.

As before, $[a, x_2]$ can be covered by a finite number of G_{α} 's. Hence $x_2 \in S$.

But $x_2 > c$ which is a contradiction, since c is the l. u. b. of S.

 $\therefore c = b.$

 \therefore [*a*, *b*]can be covered by a finite number of *G* $_{\alpha}$'s.

 \therefore [*a*, *b*]is a compact subset of **R**.

Theorem 4.13:

As ubset of \boldsymbol{R} is compact iff A is closed and bounded.

Proof:

If A is compact then A is closed and bounded.

Conversely, let A be a subset of \mathbf{R} which is closed and bounded.

Since A is bounded we can find a closed interval [a, b] such that $A \subseteq [a, b]$.

Since A is closed in R, A is closed in [a, b] also.

Thus A is a closed subset of the compact space [a, b].

Hence A is compact. (by theorem 4.11)

<u>UNIT - V</u> <u>RIEMAN INTEGRAL</u>

If *I* is the integral of real number, the length of *I* is denoted by |I|.

Set of measure Zero:

A subset $E \subset R$ is said to be a measure Zero if for each $\varepsilon > 0$, there exists a finite (or) countable number of open intervals, I_1, I_2, \dots such that $E \subset \bigcup_{n=1}^{\infty} I_n$. $\sum_{n=1}^{\infty} |I_n| < \varepsilon.$

Derivatives:

Let f be a real valued function defined on an Interval $[a, b] \subseteq R$. It is derivable at an interior point $c \in (a, b)$.

(i) If
$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$
 exists.

$$\lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$$
 exists.
Where $x = c + h \to x - c = h$.
(ii) $\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ is called the left hand derivative $= Lf'(c)$.
(iii) $\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ is called the right hand derivative $= Rf'(c)$

(iv) If
$$f'(c) = Lf'(c) = Rf'(c)$$
 then we say $f(x)$ is derivable.

(v)
$$f'(a) = \lim_{x \to a^+} \frac{f(x) - f(a)}{x - a}$$
.

(vi)
$$f'(b) = \lim_{x \to b^-} \frac{f(x) - f(b)}{x - b}$$

Example 1:

Show that the function $f(x) = x^2$ is derivable in [0,1]. **Solution:**

(i) Let
$$x_0 \in (0,1)$$

 $f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$.
 $= \lim_{x \to x_0} \frac{x^2 - x_0^2}{x - x_0}$.
 $= \lim_{x \to x_0} \frac{(x + x_0)(x - x_0)}{x - x_0}$.
 $= \lim_{x \to x_0} (x + x_0) = x_0 + x_0 = 2x_0$.

∴derivable exists an interior point.

(ii)
$$f'(0) = \lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0}$$

= $\lim_{x \to 0^+} \frac{x^2 - 0}{x - 0}$.
= $\lim_{x \to 0^+} \frac{x^2}{x}$.
= $\lim_{x \to 0^+} x = 0$.

 $\therefore f'(0)$ exists.

(iii)
$$f'(1) = \lim_{x \to f} \frac{f(x) - f(1)}{x - 1}$$

= $\lim_{x \to f} \frac{x^2 - 1}{x - 1}$
= $\lim_{x \to f} \frac{x^2 - 1}{x - 1}$
= $\lim_{x \to f} \frac{(x + 1)(x - 1)}{(x - 1)}$.
= $\lim_{x \to f} (x + 1) = 1 + 1 = 2$.

 $\therefore f'(1)$ exists.

Hence f(x) is differentiable in the closed interval (0,1).

Example 2:

A function f is defined on R where $f(x) = \{ x \text{ if } 0 \le x < 1 \\ 1 \text{ if } x \ge 1 \end{cases}$. Discuss the derivability at x = 1.

Solution:

$$Lf'(1) = \lim_{\substack{x \to 1^{-} \\ x \to 1^{-} \\ \therefore Lf'(1) = 1.$$

$$Rf'(1) = \lim_{\substack{x \to 1^{+} \\ x \to 1^{$$

Example 3:

Discuss the derivability of f(x) at 0, f(x) = |x|.

Solution:

$$Lf'(0) = \lim_{\substack{x \to 0^{-} \\ x \to 0^{-} \\ x \to 0^{-} \\ x}} \frac{f(x) - f(1)}{x}.$$

$$= \lim_{\substack{x \to 0^{-} \\ x \\ x}} \frac{f(x) - f(x)}{x}.$$

$$= \lim_{\substack{x \to 0^{-} \\ x \to 0^{+} \\ x \to 0^$$

 $\therefore Rf'(1) = 1.$ $Lf'(1) \neq Rf'(1).$ (i.e.) f'(0) does not exists. f is not derivable at x = 0.

Example 4:

Example 4:

$$x^{2} \sin x^{-1} if x \neq 0$$

$$f(x) = \{ x = 0$$

$$f(x) = \{ x = 0 \\ 0 if x = 0 \\ 0 \text{ brove that } f \text{ is derivable at } x = 0 \text{ but } \lim_{x \to 0} f'(x) \neq f'(0).$$

Solution:

$$Lf'(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(1)}{x - 0}$$

= $\lim_{x \to 0^{-}} \frac{x^{2} \sin \frac{1}{x}}{x}$
= $\lim_{x \to 0^{-}} \frac{x^{2} \sin \frac{1}{x}}{x}$
= $\lim_{x \to 0^{-}} \frac{x^{2} \sin \frac{1}{x}}{x}$
= $\lim_{x \to 0^{-}} \frac{\sin \frac{1}{0}}{x} = 0$.
$$Lf'(0) = 0.$$

$$Rf'(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0}$$

= $\lim_{x \to 0^{+}} \frac{x^{2} \sin \frac{1}{x}}{x - 0}$
= $\lim_{x \to 0^{+}} \frac{x^{2} \sin \frac{1}{x}}{x - 0}$
= $\lim_{x \to 0^{+}} x^{2} \sin \frac{1}{0}$
 $\therefore Rf'(1) = 0.$
$$Lf'(1) = Rf'(1).$$

Hence f is not derivable at $x = 0$.

Theorem:

A function which is derivable at *a* point is necessarily continuous at that point.

Proof:

Let a function f be derivable at x = c. Then $\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ exist. **To prove:** f is continuous at $x = c \cdot f(x) - f(c) = \frac{f(x) - f(c)}{x - c} \times (x - c)$ $\lim_{x \to c} [f(x) - f(c)] = \lim_{x \to c} [\frac{f(x) - f(c)}{x - c} (x - c)].$ $= \lim_{x \to c} \frac{f(x) - f(c)}{x - c} [\lim_{x \to c} (x - c)].$ $\lim_{x \to c} [f(x) - f(c)] = 0.$ $\lim_{\substack{x \to c \\ x \to c}} f(x) - \lim_{x \to c} f(c) = 0.$ $\lim_{x \to c} f(x) = \lim_{x \to c} f(c).$ $\lim_{x \to c} f(c).$

 $\lim_{x \to c} f(x) = f(c).$ f(x) = f(c).

Note:

Converse of this theorem need not be true.

Rolle's theorem:

If a function f defined on [a, b] is,

- (i) Continuous on [a, b].
- (ii) Derivable on (a, b).
- (iii) f(a) = f(b) then there exists one real number c between $a \times b[a < c < b]$ such that f'(c) = 0.

Proof:

Since the function is continuous on [a, b], it is bounded.

Let m and M are the infimum (g.l.b) and supremum (l.u.b) respectively of the function f then there exists points c and d in [a, b] such that f(c) = m and f(d) = M.

Case (i):

Let m = M, then f is constant. f(x) = M for all $x \in [a, b]$. $\therefore f(x) = 0$ for all $x \in [a, b]$. For $c \in (a, b)$, f(c) = m, that is f'(c) = 0 for all $c \in (a, b)$. Case (ii): Let $m \neq M$. Now both *m* and *M* cannot be equal to f(a). $f(c) = m \neq f(a) \Rightarrow c \neq a.$ Similarly, $f(c) = M \neq f(b) \Rightarrow c \neq b$. $\Rightarrow c \in (a, b).$ Claim: f'(c) = 0. If f'(c) < 0, there exists $(c, c + \delta_1)$ such that f(x) < f(c) = M for all $x, x \in (c, c + \delta_1)$. Which is a contradiction. If f'(c) > 0, there exists $(c - \delta_1, c)$ such that f(x) < f(c) = M for all $x, x \in (c - \delta_1, c)$. Which is a contradiction. Hence, f'(c) = 0.

Legrange's Mean Value Theorem

If a function f defined on [a, b] is, (i) Continuous on [a, b]. (ii) Derivable on (a, b). f(a) = f(b) then there exists one real number c between $a \times b[a < c < b]$ such that $f'(c) = \frac{f(b) - f(a)}{b - a}$. **Proof:** Let $\phi(x) = f(x) + Ax$ where A is a constant such that $\phi(a) = \phi(b)$. Then f(a) + Aa = f(b) + Ab.

$$A(b-a) = f(a) - f(b).$$

= -[f(b) - f(a)]
$$A = \frac{-[f(b) - f(a)]}{b-a}.$$

Since $\phi(x)$ is a sum of two continuous and derivable function.

(i) ϕ is continuous on [a, b].

(ii) ϕ is derivable on [a, b].

(iii)
$$\phi(a) = \phi(b)$$
.

Therefore by Rolle's theorem, there exists $c \in (a, b)$ such that $\phi'(c) = 0$.

(i.e)
$$f'(c) + A = 0$$

 $f'(c) = -A$.
 $f'(c) = \frac{f(b) - f(a)}{b - a}$.

Cauchy's Mean Value Theorem:

If two functions f, g defined on [a, b] are

- (i) Continuous on [a, b].
- (ii) Derivable on [a, b].
- (iii) $g'(x) \neq 0$ for any $x \in (a, b)$ then there exists one real number c between a and b such that $\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$

The Fundamental Theorem of Calculus:

A function f is bounded and integrable on [a, b] and there exists a function f such that f' =

$$f \text{ on } [a, b]$$
. Then $\int_a^b f dx = f(b) - f(a)$.

Proof:

Given $\varepsilon > 0$. There exists $\delta > 0$ such that for every partition *P* where,