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UNIT -1
METRIC SPACES

Introduction

A Metric Space is a set equipped with a reasonable concept of distance called a metric.
That means to measure the distance between two elements in the set.

1.1 Definition and Examples

Definition:

satisfying the following conditions.

(i)

(i)
(iii)
(iv)

d(x,y)=0forallx,yeM

A Metric Space is a non empty set M together with a function d: M XM — R

d(x,y)=0ifandonlyifx =y

d(x,y)=d(y,x)forallx,y

EM

d(x,z)<d(x,y)+d(y,z)forallx,y,z€ M [ TriangleInequality]

d is called a metric or distan

ce function on M and d(x , y)is called the distance

between x and y in M. The metric space M with the metric d is denoted by (M, d) or simply
by M when the underlying metric is clear from the context.

Example 1.

Proof.

i)

iii)

(Usual MetriconR)

Let R be the set of all real numbers. Define a functiond : M X M — R by
d(x,y) = | x-y|. Prove thatd is a metricon R.

Letx,y ER.
Clearlyd (x,y)=|x-y|=0.

dix,y)=0 & |x-y|=0
& x-y=0

=4 xX=y

~dx,y)=0eox=y

dix,y)=|x -yl
=ly- x|
= d(y, x)

~dx,y) = dy,x).
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iv)

Hence

Letx,y,z€R.

d(x,z)=|x-z|

lx-y+y—z|
lx-yl|+|y-z]
d(x,y)+d(y, 2).

VANl

d(x,z) < d(x,y)+d(y,z).
d is a metricon R.

Example 2

(Usual Metricon C)

Let C be the set of all Complex numbers. Define a functiond : M X M — C by

d(z,w)= |z-w| wherez=x+iy andw=u+iv.
Proof.
Letz,weC.

ii)

i)

iv)

d(z,w)=|z-w|
G EE L
=0.
~d(z,w) =0.

dix,y)=0 & |z-w|=0

o Jx— )+ (- v)?
(x—u)+@-v)?=0
(x—u)?=0and (y—v)*=0
(x—u) =0and(y—v) =0
x=uand y=v

(I R

x+iy =u+iv
~d(z,w)=0ez=w.

d(z,w)=|z-w|
=|w-z]
= d(w, z)
~d(z,w) = d(w,z).
Let z,w,| €C.

diz,l)=]z-1|
=|z-14+1- w|
< lz-1l]+]1- w|
= d(z,1)+d(,w)

~d(z,1)< d(z,1) +dd, w)

Hence d is a metric on C.

Prove that d is a metric on C.
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Example 3
( Discrete metricon M )
Let M be any non-empty set. Define a functiond : M X M — R by

_ {0 ifx=y . .
d(x,y) Lifx#y Prove that d is a metric on M.
Proof.
Letx,y € M.

Clearlyd(x,y) =0
andd(x,y)=0ox=y.

d(x,y) _ {Oifx=y

lifx+y

_ (0ify=x
{1Uy¢x

~dx,y) =dy,x).

Letx,y,z€M.
We shall prove that d(x,z) < d(x,y) +d(y, 2).
Case (i) Suppose x = z.
Then (x,2)=0
d(x,y) +d(y,z) 2 0.
~d(x,z)<d(x,y) +d, 2).
Case (ii) X # Z.
Then d(x,z)=1.

Also, since x, z are distinct,y # xandy # z.
sdl,y)+dy,2) = 1.
~d(x,z) < d(x,y)+d(y, 2).

In the above cases, d(x,z) <d(x,y) +d(y, z).
Hence d is metric on M.

Note :
1/p

1/p 1/p
By Minkowski ‘ s Inequality, “Ifp>1, { x4+ u@ < { * |x|p} + { . |x|’j

Where a3, az,...,an and b1, bz,..., b,y are real numbers.
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Example 3
(Usual Metric on Rn)

1/2
InR" we define d(x,y)= {Z?ﬂ(xi — yi)ﬂ where x = (X1,X2,...,Xn) and

y = (Y1, ¥2,...,Yn). Provethat disametricon Rr.
Proof :
Given that

1/2

d(x,y) = [Z?zl(xi—yi)j where x = (X1,X2,...,Xn) and

y=@uy2, e ¥n)

1/2
) dEy= [zzzl(xi—yiﬂ =0
1/2

i)  dx,y)=0 & [z;’zl(xi—yi)ﬂ =0

e Y, (xi—yi)? =0

& (xi—yi)2 =0 foreachi=1,2,...,n
e xi-yi=0 foreachi=1,2,...,n
=3 xi =vyi foreachi=1,2,...,n
S X=y.

~d(x,y)=0 & x=y

1/2
i) d(x,y) = [Z?ﬂ(xi—yi)ﬂ /
1/2
- [zzzl(yi—xi)z]
d(y, x)

iv) Letx, y,z€Rn
Toprovethat d(x,z) < d(x,y) +d(y,2z)

Takeai=xi-yi, bi=yi-z and p =2 and using

1/2 1/2

1/2
Minkowski ‘s Inequality, we have { Y |xi— yi @ < F?ﬂ |x|2}+ {Z’;l |x|2J

~dxx,z) £dX,y) +d(y,z)
Hence dis a metricon R».
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1.2.0pen Sets in a Metric Space

Definition:

Let (M, d) be a metric space. Let a € M and r be a positive real number. The open ball
or the open sphere with center a and radiusr is denoted by Ba (a, r) and is the subset of M
definedby Ba(a,r) ={x €M / d(a, x) <r}. We write B(a,r) for
Ba (a, r) if the metric d under consideration is clear.

Examples:

1. In R with usual metricB(a,r)=(a—r1r,a+71).

2. In RZ with usual metric B(a, ) is the interior of the circle with center aand
radiusr.

Definition: Let (M, d) be a metric space. A subset A of M is said to be open in M if for each
x € A there exists a real number r > 0 such that B(x,r) € A.

Note. By the definition of open set, it is clear that ¢ and M are open sets.

Examples:
1. Anyopeninterval (a, b) is an open set in R with usual metric.

Proof :

Let x € (a, b).

Choose areal number rsuchthat 0 <r<min{x—a,b—x}.
Then B(x,r) € (a, b).

~(a,b) isopeninR.

Every subset of a discrete metric space M is open.
Proof :

Let A be a subset of M.

If A= ¢, then A is open.

Otherwise, let x € A.

Choose a real number r such that 0 <r < 1. Then
B(x,r)={x} < Aandhence A is open.

Set of all rational numbers @ is not open in R.
Proof :
Letx €Q.

For any real numberr >0, B(x,r) = (x — r, x + r) contains both rational and irrational
numbers.
~ B(x,r) € Qand hence Q is not open.
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Theorem 1.1

Let (M, d) be a metric space. Then each open ball in M is an open set.

Proof.

Let B(a, r) be an open ball in M.
Let x € B(a,r).

Thend(a,x) <r.

Taker1 = r - d(a, x).Then r1 > 0.
We claim that B(x,r1) € B( a,z).

Lety € B( x, r1).
Then (x,y) <r1.

Now,
d(a,y)<d(a,x)+d(x,y)

<d(a,x)+m
=d(a,x)+r-d(a,x)=r.

~d(a,y) < r.

~y € B(a, r).

~B(x,r1)E€B(a,r).

Hence B(a, r) is an open ball.

Theorem1.2

In any metric space M, the union of open sets is open.
Proof.

Let (M, d) be a Metric Space.
Let{A:i/i € I} a family of open sets in M.

We have to prove A = U A, is open in M.

If A= ¢ then Ais open.

~let A # ¢. Let x € A.

Then x € Ai for some € [.

Since Ai is open, there exists an open ball B(x, r) such that B(x, r) € A..

~B(x,r)c A.
Hence A is open in M.

Theorem 1.3

In any metric space M, the intersection of a finite number of open sets is open.

Proof:
Let A4, Ay, ...., A, be open sets in M.

We have to prove A = A1 N A2 N ....N Anis open in M.
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If A= ¢ then Ais open.
~let A# ¢. Letx € A.

Then x € Aiforeachi=1,2,..,n.

Since each Aiis open, there exists an open ball B(x, ) such that B(x, i) € A..
Taker=min{ri,r2,..,rn}.

Clearly,r > 0 and

B(x,r) € B(x,r)foralli=1,2,...,n.

Hence B(x,r) € Aiforeachi=1,2, ...,n.

~ B(x,r) € A

~ Aisopenin M.

Theorem 1.4

Let (M, d) be a metric space and A € M. Then A is open in M if and only if A can be expressed
as union of open balls.

Proof :

Suppose that A is open in M.

Then for each x € A there exists an open ball B(x, rx) such that,B(x, rx) € A.
A = Uxea B(x, x).

Thus A is expressed as union of open balls.

Conversely, assume that A can be expressed as union of open balls. Since
open balls are open and union of open sets is open, A4 is open.

1.2 Interior of a set

Definition:
Let (M, d) be a metric space and A € M. A point x € A is said to be an interior
point of A if there exists a real number r > 0 such that B(x, r) € A.

The set of all interior points is called as interior of A and it is denoted by Int A.

Note: Int A C A.

Example: In R with usual metric, let A =[1, 2]. 1 is not an interior points of A, since for any
real number >0,B(1,7r) =(1-r,1+ r) contains real numbers less than 1.

Similarly, 2 is also not an interior point of A. In fact every point of (1, 2) is a limit point of A.
Hence IntA = (1,2).
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Note:
Q)ntp=¢pandIntM = M.
(2)Ais open & Int A = A.
(3)ACB = Int A< IntB.

Theorem1.5

Let (M, d) be a metric space and A € M. Then Int A = Union of all open sets contained in
A.

Proof.

Let G = U{B/B is an open set contained in A}
we have to prove Int A = G.

LetxeIntA.

Then x is an interior point of A.

- there exists a real number r > 0 such that B(x,r) € A.

Since open balls are open, B(x, r) is an open set contained in A.
~B(x,r) <.

~XEQG.

B Y A N SR (*)

LeteG.
Then there exists an open setB such that B € Aand x € B.
Since B is open and x € B, there exists a real number r > 0 such that B(x,r) € B € A.

-~ Xxis an interior point of A.
~x€eIntA.

From (*) and (**), we get Int A = G.

Note:Int A is an open set and it is the largest open set contained in A.
Theorem1.6

Let M be a metric space and A, B € M. Then

1) Int (A n B) = (Int A) n (IntA)
11) Int (A U B) 2 (Int A) U (IntA)

Proof.
i) ANBC A= Int(AnB) c Int A.

Similarly, Int (AN B) € Int B.
2 INt (AN B) S (INEA) N (INEA) oot sss s sssssssssssenas (a)

IntACAandIntBSB.

«(ntA)n(ntA)SANB
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Now, (Int A) N (Int A) is an open set contained in N B .

But, Int (A N B) is the largest open set containedin N B .
S(IntA) N (INEA) SINE (A N B) et (b)

From (a) and (b) , we get Int(A N B) = (IntA) N (IntA)

(i) ASAUB=IntAc Int(AU B)
Similarly, Int B € Int (AU B)
~Int(AU B) 2 (IntA) U (IntA)

Notel.7: Int(A U B) need not be equal to IntA U Int A

For,

In R with usual metric,

Let A= (0,1] and B = (1,2).

Then AU B =(0,2).

~Int(AU B) =(0,2)

Now, IntA = (0,1) and IntB = (1,2) and hence IntA U IntA = (0,2)- {2}.
~Int(AU B) # (IntA) U (Int A)

1.2.Subspace

Definition:

Let(M , d) be a metric space. Let M1 be a nonempty subset of M. Then M1 is also a

metric space under the same metric d. We call (M1, d) is a subspace of (M, d).

Theorem1.8

Let M be a metric space and M1 a subspace of M. Let A € M1. Then A1 is openin

M1 if and only if A1=A n M1 where A is open in M.
Proof:

Let M1 be a subspace of M. Let a € M1.
Let Mi(a,r) be the open ball in M1 with center a and radius r.

Then Bi(a, r) = B(a,r) N Miwhere B(a, r) is the open ball in M with center a and radius r.

Then Bi(a,r) = {x € M1/d(a, x) <r}.

Also, B(a,r) ={x€ M/d(a, x) <r}.
Hence,Bi(a,r) = B(a, ) N M1.

Let A1 be an open set in M.
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ThenA = B1(x,r (x))
= Usen,[B(x, 7(x)) N M1]
=[Uxea, B(x, 7(x))] N M1
=AN M
Where A = Uxea, B(x, r(x))which is open in M.

Conversely, let A= G N M1 where G is open in M.
We shall prove that A1 is open in M.
Let x € A1.

Then x € A and x € M1.

Since A is open in M, there exists an open ball B(x,r) such that B(x ,r)CA.
~B(x,r)M1iNnE AN M.

i.e. Bi(x, 1) € M.

~ Aiis open in Mi.

1.2.Bounded Sets in a Metric space.

Definition:
Let(M, d)be a metric space. A subset A of M is said to be bounded if there exists a positive
real number k such thatd(x, y) <k V x,y € A.

Example:
Any finite subset A of a metric space (M, d) is bounded.
For,

Let A be any finite subset of M.
If A= ¢, then A is obviously bounded.

Example:
[0,1] is a bounded subset of R with usual metric since d(x, y) <1 forall x, y € [0,1].

Example:

(0, 00) is an unbounded subset of R.
Example:
Any subset A of a discrete metric space M is bounded since

d(x,y)<1forallx,ye€A.
Note:
Every open ball B(x, r) in a metric space (M, d) is bounded.

Definition:
Let(M, d) be a metric space and A € M. The diameter of 4, denoted by d(A), is defined
byd(A) =1Lu.b{d(x,y)/x,y € A}.

Example:
InR with usual metric the diameter of any interval is equal to the length of the
interval. The diameter of [0,1] is 1.
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UNIT-1I

CLOSED SETS
2.1.ClosedSets

Definition:
A subset A of a metric space M is said to be closed in M if its complement A is openin
M.

Examples

1. In R with usual metric any closed interval [a, b] is closed.

For,

[a,b]lc=R-[a,b]=(—0o0,a)VU (b, x).

(—o0, a) and (b, o) are open sets in R and hence (—o0, a) U (b, ©) is open in R.
i.e. [a, b]cis openin R.

~ [a, b] is openin R.

2. Any subset A of a discrete metric space M is closed since A¢ is open as every subset of M
Is open.

Note. In any metric space M, ¢ and M are closed sets since ¢p¢ = M and M¢ = ¢ which are
open in M. Thus ¢ and M are both open and closed in M.

Theorem 2.1.

In any metric space M, the union of a finite number of closed sets is closed.
Proof:
Let (M, d) be a Metric space.

Let B[a, r] be a closed ball in M.

Case (i) Suppose Bla, r]c = ¢

.~ B[a, r]¢is open and hence Bla, r] is closed.
Case (ii) Suppose Bla, r]|¢ + ¢

Let x € Bla, r]°.

~ X €& Bla, ]
~dla,x)>r

~d(a,x)—r>0.
Letri=d(a,x)—r1.

We claim that B(x, r1) € B[a, r]°.
Lety € B(x, 1r1).
Thend(x,y) <ri=d(a x)—r.

~d(a,x)>d(x,y)+r.
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Now, d(a, x) <d(a,y) + d(y, x).
d(a,y) > d(a,x) — d(y, x).
>d(x,y)+r—d(y x).
=T.
Thus d(a,y) >r.
~y¢&Bla,r].
Hence y € Bla, r]°.

~ B(x,r1) € Bla, r].
~ Bla, r]¢ is openin M.
~ Bla,r] isclosedin M.

Theorem 2.2

In any metric space M, arbitrary intersection of closed sets is closed.
Proof:
Let (M, d) be a metric space.

Let {A;/i € Ilbe a family of closed sets in M.
We have to prove Nier Ai is closed.

We have (Nie; 4;)°= Uies A€

(by De Morgan’s law)

Since A is closed Ai¢ is open.

Hence Uies Ai€ is open.

s (Nier A€ is open in M.
~Nier Aiis closed in M.

Theorem 2.3

Let M1 be a subspace of a metric space M. Let F1 € M1. Then F1is closed in M1 if and only
if F1=F N M1where F is a closed setin M.

Proof.

Suppose that Fis closed in Mx.
Then M1 - Fiis open inM1.
&~ M1- F1 = AN MiwhereA is open in M.

Now, F1=A N M1.

Since A is open in M, Acis closed in M.

Thus, F1 = F N Miwhere F = Acis closed in M.

Conversely, assume that F1 = F N M1 where F is closed in M.
Since F is closed in M, Fcis open in M.

~Fcn M1is openin M1.
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Now, M1- F1 = F¢ N M1 which is open inM1.
~ F1iis closed inM1.
Proof of the converse is similar.

2.1.Closure.

Definition:

LetA be a subset of a metric space (M, d). The closure of A, denoted by A is defined to be
the intersection of all closed sets which contain A.

i.e. A=N{B/Bis closed in M and A < B}.
Note

(1) Since intersection of closed sets is closed, A is closed set.

(2) A is the smallest closed set containingA.

(3) Ais closed & A =A.

Theorem 2.4:
Let (M, d) be a metric space. Let A, B S M. Then
i) ACB=>ACB
(i) AUB = AUB
(iii) ANB € ANnB
Proof:
(i) Let ACB,

Now B 2B2A.
Thus B is a closed set containing A.

But 4 is the smallest closed set containing A.

~ACB
(ii)jwe have A € A UB.
~ A C A UB. (by (i)).

Similarly - B C A UB.

~AUB € AUB — (1)

Now A is a closed set containing A and "B isaclosed set containing B.
U

B is a closed set containing A U B.

But A U B is the smallest closed set containing A U B.
-

AUBCc A U B— (2)

From (1) and (2) we get
AUB = AUTB
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(i1)  Weknowthat ANB S A
ANB S A (byli).
Similary ANB S B
ANB cANnB

Note: L
A NB neednotbeequaltod NB

2.1 Limit Point

Definition:
Let (M, d)be a Metric space. Let A S M. Let x € M. Then x is called a limit point of A
if every open ball with Centre x contains at least one point of A differ from x.

(i.e) B,r)N(A—{x}) #¢ forallr > 0.

The set of all limit points of A is called the derived set of A and is denoted by D(4)

Theorem 2.4
Let (M, d) be a metric space and A € M. Then x is a limit point of A if and only if every
open ball with center x contains infinite number of points of A.

Proof :
Let x be a limit point of A.
Suppose an open ball B(x, ) contains only a finite number of points of A.

B(x,7) n (A— {x}) = {x1,x2, ....., Xn}
letr1=min{d(x, xi)/i=1,2,...,n}.

Since x # xi, d(x,xi) >0 foralli=1,2, ...,nand hence r1 > 0.

Also B(x, ) n (A — {x}) = ¢.

~ xis not a limit point of A which is a contradiction. Hence every ball with center x contains
infinite number of points of A.

The converse is obvious.

Corollary 1: Any finite subset of a metric space has no limit points.

Theorem 2.5
Let M be a metric space and A S M.Then A = AU D(A).
Proof: Let x € AU D(A). we shall provethat x € 4

Suppose x & A

~XEM-A andsince A isclosed M —4 is open.

= There exists an open ball B(x, 1) S M -4
~Bx,r)NA = ¢.

Page 16 of 47



~ B(x,T)NA=¢.(sinceASA)

x ¢ AU D(A) which is a contradiction.
LXEA

~ AuD(A)cA

Now letx € 4

To prove x € AU D(A).

If x € A.

clearlyx e AU D(A).

Suppose x & A. We claim that x € D(A).

Suppose x & D(A). Then there exists an open ball B(x, r) such that B(x,r) N A = ¢.
~B(x,r)*2A and B(x,r)¢is closed.

But 4 is the smallest closed set containing A.

~ A S B(x,1)e.

But x € A and x & B(x, )¢ which is a contradiction.
Hence x € D(A).

~ XxX€EAU D(A).

~ACSAUD(A

Hence~ AUD(A) = A

Corollary 1: A is closed iff A contains all its limit
points. (i.e.) 4is closed iff D(A) € A.

Proof: Aisclosed © A =4 (bytheorem 2.13)
< A=AUD(A).

& D(A) CA.
Corollary 2: x e A= B(x, 1) N A # ¢forallr > 0.

Proof:let x€A then x€AuUD(A).
~x€AorxeD(A).

Ifx € Athen x € B(x, r) N A.

ifx € D(A) then B(x,r) N A+ ¢ forallr>0.
Hence in both cases B(x, ) N A # ¢ forallr > 0.
Conversely Suppose B(x,r) N A # ¢ forallr > 0.
We have to prove that, x € A

If x € A trivially x € A

Letx € A.Then A — {x} = A.
~Bx,r)NA—{x}+# .

~x €D(A).
“ XEA
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Corollary 3:

XEAS G N A+ ¢forevery open set Geontaining x.
Dense sets Proof:

letx €A

Let G be an open set containing x.then there exists r > 0 such that B(x, r) € G.

Also, sincex €4, B(x,r) N A+ ¢.

~GNA* .

Conversely suppose G N A + ¢ for every open set Gcontaining x.
Since B(x, r)is an open set containing x,we have B(x, ) N A # ¢.
. XEA

Definition:

A subset A of a metric space M is said to be dense in M or every where dense if 4 = M.

Definition:

A metric space M is said to be separable if there exists a countable dense subset in M.

Note :

(1) Any countable metric space is separable.
(2) Any uncountable discrete metric space is not separable.

Theorem 2.6:

Let M be a metric space and A € M. Then the following are equivalent.

(i) A isdensein M.
(il The only closed set which contains 4 is M.
(iii The only open set disjoint from A4 is ¢.

(iv) A intersects every non empty open set.
(v) A intersects every open ball.
Proof:

(i)=(ii).
Suppose 4 is dense in M.
We claim that The only closed set which contains A is M.

Suppose A is dense in M.

Now, let F € M be closed set containing A.

Since 4 is a closed set containing 4, we have ACF.
Hence M € F.(by (1))

~M=F.

Hence, the only closed set which contains 4 is M.
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(iii) =(ii)
Suppose the only closed set which contains A is
M

We claim that The only open set disjoint from A

is ¢.

Suppose (iii) is not true.

Then there exists a non empty open setB such that, BN A = ¢.

~ B¢ is closed set and B2 A.

Further, since B # ¢ we have B¢ + M which is a contradiction to (ii).
Hence (ii) = (iii).
Obviously, (iii)=(iv).

(iv)=(v), since every open ball is an open set.

(iv)  =(i)
Suppose A intersects every non empty open set.

We claim that A intersects every open ball

Let x € M. Suppose every open ball B(x, r)intersects A.

Then by corollary, x € 4
~McA

But trivially A S M.
~A=M.

~ Ais densein M.
2.1. Completeness

Definition:
let (M, d) be a metric space. Let (xn ) = X1, X2, ..., Xn, ... be a sequence of points in
M. Let x € M. We say that (xn) converges to x if given € >0 there exists a positive integer no

such that d(xn, x) < € for all m = no. Also x is called a limit of (xn).

If (xn) converges to x we write lim x» = x or (xn) - x.

n—oo

Note 1: (xn) — x iff for each open ball B(x, €) with Centre x there exists a positive integer no
such that xn € B(x, €) for all n > no.

Thus the open ball B(x, €) contains all but a finite number of terms of the sequence.

Note 2:(xn) — x iff the sequence of real numbers d((xn, X)) = 0.

Theorem2.6:
For a convergent sequence (xn) the limit is unique.
Proof: Suppose (xn) — x and (xn) — y.

Let € > 0 be given. Then there exist positive integers niand nz such that
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d(xn,x)<&/2 foralln=>ni1andd (x.,y) < & /2 forall n > n2.
Let for all m be a positive integer such that for all m > ni, ne.

Then
d(x,y) < d(x, xm) + d(xm, y)
<eg/2 + &€/2
=
~d(x,y) <e

Since € > 0 is arbitrary, d(x,y) = 0.
SX = y

Theorem 2.7
Let M be a metric space and A € M. Then

(i) x € A iff there exists a sequence (xn) in 4 such that (xn) - x.

(ii) x is a limit point of A iff there exists a sequence (x») of distinct points in A such that

(xn) = x.
Proof:
letx €A
Then,x € A U D(A) (by the above theorem)
~x€EAorxeD(A)
If x € 4, then the constant sequencex, x, ... ... Is a sequence in A converging to x.

If x € D(A) then the open ball B(x, 1/n) contains infinite number of points of A (by theorem)

~ We can choose xn € B(x, 1/n) N A such that xa # x1, X2, ...., Xxn—1 for each n.

~ (@& )is a sequence of distinct points in A. Also d(xa, x) < ! for all n.
n
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~lim d(xn, x) = 0.

x>0
& (xn) = x.

Conversely, suppose there exists a sequence (xn)inA such that (xn) — x.

Then for any r > 0 there exists a positive integer no such that d(xn, x) <7 for all n = no.

~ xn € B(x, r) for all n = no.

~Bx,r)NA+¢

~ X€EA (by corollary 2)

Further if (xn) is a sequence of distinct points, B(x, ) N A is infinite.

~x€D(A).

~ x is a limit point of A.

Definition: Let (M, d) be a metric space. let(xn) be a sequence of points in M. (xn) is said to
be a Cauchy sequence in M if given &€ > 0 there exists a positive integer no such that d(xm, xn)
< gforallm, n = no.

Theorem 2.7:

Let (M, d) be a metric space. Then any convergent sequence in M is a Cauchy sequence.
Proof:

Let (xn) be a convergent sequence of points in M converging to x € M.

Let € > 0 be given.
Then there exists a positive integer no such that (xn, x) < 218 for all n = no.

Therefore, d(xn, xm) < d(xn, x) + d(x, Xm)

1,1
< &+ & forallm,n=no
2 2

= gfor allm, n = no.
~d(xy, x;m) < & forallm, n > n,.
=~ (xn) is a convergent sequence.

Note:
The converse of the above theorem is not true.
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Definition:
A metric space M is said to be complete if every Cauchy sequence in M converges to a
point in M.

Theorem 2.8: (Canton’s Intersection Theorem)

Let M be a metric space. Mis complete iff for every sequence (Fxn) of nonempty closed subsets
of M such that

F12F22:-2Fx2--and d((Fn)) - 0. Nn=1* F, is nonempty.
Proof:

Let M be a complete metric space.
Let (Fn) be a sequence of closed subsets of M such that
Fi12F222Fy 2 e (1)

and d((Fn)) — 0. --(2)

we claim that . N;j_; Fnis nonempty.

For each positive integer n, choose a point xn € Fn.
By (1), Xn, Xn+1, Xn+2, .... all lies in Fa.

(i.e) xm € Fuforallm=n----------------—---- (3)

Since (d(Fn)) — 0, given &£ > 0, there exists a positive integer no, such that d(Fn) < & for all
n = no.

In particular d(Fn,) < & ----=--=--=----- (4)

~d(x,y) <é&forallx,y € Fn.

Now,xm € Fn, for allm = no. (by(3))

SM,N =N = Xm, Xn € Fn,.

= d(xm, xn) < €. (by(4))

=~ (xn)is a Cauchy sequence in M.

Since M is complete there exists a point x € M such that (xn) — x.
We claim that x € Na=1 Fn.

Now, for any positive integer n,
Xn, Xn+1, Xn+2, ... isa sequence in Fnand this sequence
converges to X.

~x €E (bytheorem 3.2)
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But F isclosed and hence E, = Fn.

“ X E Fn.
SXE ﬂ‘ﬁlen.
Hence Nn=1%Fn # ¢.

Conversely let,(xn)is a Cauchy sequence inM.

Let F1 = {x1, X2, ... ... , Xny vt }
F1={x2 x3, ... .. , Xny e }
Fn = {Xxn, Xn+1, Xn+2, ... . }

Clearly F12 F22 - 2 Fp 2 -

_E 2_5 ... 2_1;'; o ...

= (E)is a decreasing sequence of closed of closed sets.

Now, since (xn) is a Cauchy sequence given £ > 0 there exists a positive integer no, such that

d(xm, xn) < € for all m, n = no.

~ For any integer n = no, the distance between any two points of Fn is less than &.

~d(Fn) <egforalln=no
But d(Fn) = d(_l;)

~ d(E) < & foralln >no

(d(E)) - 0.

Hence N, Fyis nonempty

letx N> E Thenxandxn €K

n=1
d(.X'n, .X') < d(_EL)
~ d(xn, x) < e forallm = no (by(5))
o (xn) - x.

~ Mis complete.
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Definition:

A subset of a metric space M is said to be nowhere dense in M if Int A = ¢.

Definition:
A subset of a metric space M is said to be of first category in M if A can be expressed as
a countable union of nowhere dense sets.

A set which is not of first category is said to be of second category.
Remark:
Let M be a metric space and ACB. Then the following are equivalent.
() Ais nowhere dense in M.
(i) A does not contain any non —empty open set.
(iii)  Each non-empty open set has a non- empty open subset disjoint from A.
(iv)  Each non —empty open set has a non -empty open subset disjoint from A.

) Each non — empty open set contains an open sphere disjoint form A.

Theorem?2.9: (Baire’s Category Theorem)

Any complete metric space is of second category.
Proof: Let M be a complete metric space.

Claim: M is not of first category.

Let (An) be a sequence of nowhere dense sets in M.

Since M is open and A1 is nowhere dense, there exists an open ball say B1 of radius less than 1
such that B1 is disjoint from A1. (since by above remark ).

Let F1 denote the concentric closed ball whose radius is %times that of B1.

Now, Int F1is open and Az is nowhere dense.

~Int F1 contains an open ball B2 of radius less than 1/2 such that B2
is disjoint from A2.

Let F2 be a concentric closed ball whose radits is
As is nowhere dense.

~ Int F2 contains an open ball B2 of radius less than 1/2 such that B3

is disjoint from A3.

Let F3 be a concentric closed ball whose radius is 1/2 times that of Bs.
Proceeding like this we get a sequence of nonempty closed balls Fr such that

Fi2F22--2Fn2- andd(Fs) < 1/20

Hence (d(Fn)) = Oasn — co.

Since M is complete, by Cantor ’s intersection theorem, there exists a point x in M such that
x € N ey Fn
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Also each Fnis disjoint from An.
Hence, x € Fnforalln.

S X $ Uzo=1 An.

= U=y An # M. Hence M is of second category.

Corollary: R is of second category.
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UNIT - 1ll
COUNTINUITY

Definition:
let(M1, d1) and (M2, d2) be metric spaces.

Let f: M1 — M2 be a function. Let a € M1and [ € M2. The function f is said to have a limit as
x — a if given € > 0, there exists § > 0 such that,

0<di(x,a) <6=>d(f(x), ) <e.
We write lim f(x) = L.

x—a

Definition :

Let(M1, d1) and (M2, dz2) be metric spaces. Let a € M1.A function f: M1— Mz is said to
be continuous at a if given € > 0, there exists § > 0 such that,

di(x,a) < § = d2(f (%), f(a)) < e.

fiis said to be continuous if its continuous at every point of M1.

Note:1
f is continuous at a iff lim f(x) = f(a).
x—a
Note:2

The condition d1(x, a) < 6 = d2(f(x), f(a)) < & can be rewritten as
(i) XxE€B(x,6) = f(x) €eB(f(a), e)or
(i) f(B(a, 8)) € B(f(a),e).

Theorem 3.1:

Let (M1, d1) and (M2, dz2) be metric spaces. Let a € M1. A function f: M1—> M2 is
continuous at a iff (xn) = a= (f(xn) — f(a).

Proof: Suppose f is continuous at a.
Let (x,,) be a sequence in M such that (x,) — a.

Claim:(f(xn)) — f(a).

Let € > 0 be given. By definition of continuity, there exists § > 0 such that,

di(x, a) < § = d2(f(x), f(a)) < &. -=--m-mmmmmmmmme- (1)

Since (x,) — a, there exists a positive integer ng such that d;(x,, a) < 6 for all n = n,.
~d2(f(x), f(a)) < eforall n = no. (by(1))

= (fGen)) — f(a).

Conversely, suppose (xn) = a = (f(xn)) — f(a).
Claim:f is continuous at a.
Suppose f is not continuous at a. Then there exists an € > 0 such that for all § > 0,

f(B(a,8)) ¢ B(f(a), &)

Page 26 of 47



In particular, f (B (a, 1)) « B(f(a), €).

Choose x% suchthat% ¢ p (g, 1_)and (x n) ¢ B(f(a), €).

n
~di(xn, q) <! and d Z(f(x):f(a)) = E.
n
(xn) = aand(f(xn)) not converges to f(a) which is a contradiction to the hypothesis.
Hence, f is continuous at a.
Corollary 1:A function f: M1 — Mz is continuous at a iff (xn) = x = (f(xn)) — f(x).

Theorem 3.2:

Let (M1, d1) and (M2, d2) be metric spaces. f: M1 — Mazis continuous iff f~1(G) is open in M1
whenever G is open in Ma.

(i.e) f is continuous iff inverse image of every open set is open.
Proof:
Suppose f is continuous
Let G be an open set in Ma.
Claim:f~1(G) is open in M2.
Iff=1(G) is empty, then it is open. Let f~1(G) # ¢.
Let x € f~1(G). Hence f(x) €G.
Since G is open, there exists an open ball B(f(x), €) such that B(f(x), €) € G.
Now, by definition of continuity, there exists an open ball B(x, §) such that f(B(x, §)) <
B(f(x), €).
~ f(B(x,8)) € G (by(1))
~B(x,6) € f~1(6)
Since x € f~1(G) is arbitrary, f~1(G) is open.
Conversely, suppose f~1(G) is open in M1 whenever G is open in M2.
we claim that f is continuous.
Let x € M1.
Now, B(f(x), €) is an open set in M2.
~ f~1(B(f(x), €)isopenin Miand x € f~1(B(f(x), €).
Therefore there exists § > 0 such that B(x, §) € f~1(B(f(x), €).
~ f(B(x,6)) € (B(f(x), &).
- fis continuous at x.

Since x € M1 is arbitrary f is continuous.
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Theorem 3.3:

Let (M1, d1) and (M2, d2) be two metric spaces. A function f: M1 — Mz is continuous iff
f~1(F) is closed in M1 whenever F is closed in M2.

Proof: Suppose f: M1 — M2 is continuous.
Let F € M2 be closed in M2.
~ Fcis open in M.
~ f~1(F¢)is open in M1.
Conversely, suppose f~1(F) is closed in M1 whenever F is closed in M.
We claim that f is continuous.
Let G be an open set in M.
~ G¢is open in M>.
~ f~1(G%)is closed in M1.
~ [f1(G)]¢ is closed in M1.
~ f~1(G) is open in M1.

- fis continuous.

Theorem 3.4:

Let (M1, d1) and (M2, dz) be two metric spaces. A function f: M1 — Mz is continuous iff
f(&) <fF{A) forall A S M.

Proof:

Suppose f is continuous.

Let A € My. Then f(A) S M,.

Since f is continuous, f—l(f(_A)) is closed inM1
Also f~1(f(A)) 24 (since f(A) 2 f(4))

But A'is the smallest closed set containing A.
“Ac f(f(A)

“f(® € f(A)

Conversely, let f(4) S f(A) forall A S M.

To prove:f is continuous.

We shall show that if F is a closed set in Mz, then f~1(F) is closed in M.
By hypothesis, f( f 1 (F)) & f f 1(F)

cCF
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= F. (sinceF is closed.)
Thus f(f~1(F)) € F.

S fTUF) € f1R)

Also f~1(F) € f~1(F).
F1F) = 1)

Hence f~1(F) is closed.

~ f is continuous.

3.2Homeomorphism

Definition: Let (M1, d1) and (M2, d2) be two metric spaces. A function f: M1 — M is called a
homeomorphism if

(i) fis 1-1 and onto.

(il fis continuous.

(iii f~lis continuous.

MiandM; are said to be homeomorphic if there exists a homeomorphismf: M1 — M.

Definition: A function f: M1 — Mz is said to be an open map if f(G) is open in Mz for every
open set Gin M1.

(i.e) f is an open map if the image of an open set in M1 is an open set in M2.
fis called a closed map if f(F) is closed in M2 for every closed set F in M1.
Note: Letf: M1 — M2 be a 1-1 onto function. Then f~1is continuous iff f is an open map.
For, f~1is continuous iff for any open set G in M1(f~1)~1(G) is open in Mo.
But, (f~1)~1(G) = f(G).
=~ f~1is continuous iff for every open set G in M1, f(G) is open in Ma.
~ f~1is continuous iff f is an open map.
Note: Similarly f~1is continuous iff f is a closed map.
Note: Letf: M1 — M2 be a 1-1 onto map. Then the following are equivalent.
(i) fis homeomorphism.
(ii fis continuous open map.
(il fiis continuous closed map.
Proof:
(i) (ii) follows from Notel and the definition of homeomorphism.
(i))=(iii) follows from Note2 and the definition of homeomorphism.

Note: Let f: M1 —» M2 be a homeomorphism. G € Miis open in M1 iff f(G) is open in M2.
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Note: Letf: M1 — M2 be a 1-1 onto map. Then f is a homeomorphism iff it satisfies the
following condition.

Fis closed in M4 iff f(F) is closed in M.

3.3 Uniform Continuity

Definition : Let(M1, d1) and (M2, d2) be two metric spaces. A function f: M1— Mz s said to
be uniformly continuous on M1 if given > 0, there exists § > 0 suchthat,

di(x,y) <é=>d2(f(x), f(¥)) < .

Problem 3.5: Prove that f: [0,1] — R defined by f(x) = x2 is uniformly continuous on [0,1].
Solution:

Let € > 0 be given. Let x, y € [0,1].

Then [f(x) = f(W)| = Ix2 = y?| = |x + yllx — yl

<2|x —y| (sincex <landy<1)

wlx—yl < gs =10 - fO)I< e

=~ f is uniformly continuous on[0,1].

Problem 3.6: Prove that the function f: R — R defined by f(x) = sin x is uniformly
continuous on R.

Solution:

Let x, y € Rand x > y.

sinx — siny = (x — y)cos zwherex >z>y (by mean value theorem)
~|sinx — siny| = |x — y||cos z|

<l|x -yl (since |cos z| < 1).

Hence for a given > 0, we choose § = ¢, we have |[x —y| <d = |f(x) — f(¥)| =
|sinx — siny| < e.

~ f(x) = sin x is uniformly continuous on R.

3.4 Discontinuous functions onr

Definition: A function f: R — R is said to approach to a limit [ as x tends to a if given >0,
there exists § > 0 such that

0<|x—al<d=|f(x) — 1] <eand we write lim f(x) = L.

xXx—a

Definition: A function f is that to have [ as the right limit at x = a if given € > 0, there exists
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§>0suchthata<x<a+d§=|f(x) —l| <eandwewritelim  f(x) =1,
x—a+

Also we denote the right limit lby f(a +).

A function f is that to have [ as the left limit at x = a if given > 0, there exists § > 0 such
thata—6<x<a=|f(x) —l|<eandwewritelim f(x)=1.

x—a—
Also we denote the right limit [ by f(a —).
Note:lim f(x) = lifflim  f(x) =lim f(x) =1

x—a x—a+ x—a—
(i.e.) lim f(x) exists iff the left and right limits of f(x) at x = a exists and are equal.
x—a

Note: The definition of continuity of f at x = a can be formulated as follows.
fis continuous at at a iff f(a +) = f(a —) = f(a).

Note: If lim f(x) does not exists then one of the following happens.
x—a

(i 11m f(x)does not exists.

x—a

i) llm f(x)does not exists.
xXx—>a—

i) lim f(x)andlim f(x) exist and are unequal.
x—a— x—a+

Definition: If a function f is discontinuous at a then a is called a point of discontinuity for the
function.

If a is a point of discontinuity of a function then any one of the following cases arises.

(i) lim f(x)exists but is not equal to f(a).

x—a

(i) lim f(x)and llm f(x) exist and are not equal.
Xx—>a—

(iii)  Either lim f(x) or 11m f(x) does not exist.

xXx—>a—

Definition: let a be a point of discontinuity for f(x). ais said to be a point of discontinuity of
the first kind if lim  f(x) and hm f(x) exist and both of them are finite and unequal.

xXx—>a—

ais said to be a point of d|scont|nU|ty of the second kind if either lim f(x) or llm f(x) are
xXx—>a—

does not exist.

Definition:Let A C R. Afunction f: A = R is called monotonic increasing if x, y € Aand x <
y=f)<f).
f is called monotonic decreasing if x, yE Aand x >y = f(x) = f(y).

fis called monotonic if it is either monotonic increasing or monotonic decreasing.
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Theorem 3.7:

Let f: [a, b] = Rbe a monotonic increasing function. Then has a left limit and right limit at
every point (a,b). Also f has a right limit at a andf has a left limit at b. Further x<y =

fx+) < fy-).

Similar result is true for monotonic decreasing function.
Proof:

Let f: [a, b] = R be a monotonic increasing function.

Let x€[a,b]. then { f(t)/a <t < x} is bounded above by f(x).
Letl=Lu b{f(t)/a<t<x}

Claim: f(x—) =1

Let € > 0 be given .By definition . u. b there exists t suchthata < t <xand [- —e < f(t) <
l

Thereforet<u<x=1l—e< f(t) < f(u) <1

(since fis monotonic increasing)

>l-e<fw)<l
tx—0<u<x=>l—e<f(u)<lwhered=x—-t
~f(x=)=1

Similarly we can prove that f(x+) = g. L b{f(t)/x <t < b}
ToProve:x <y= f(x+) < f(y-)

Letx <y

Now,f(x+)=g.L b{f(t)/x <t < b}
=g.Lb{f(t)/x<t<y}

(sincef is monotonic increasing)

Also, f(y—) =Lu. b{f(t)/a<t<y}
=lub{f(t)/x<t<y}

fx+) <, fy-)

The proof of monotonic decreasing function is similar.

Theorem 3.8:

Letf: [a, b] — R be a monotonic function. Then the set of points of [a,b] at which f is
discontinuous is countable.

Proof:

Let E = {x/x € [a, b] and f is discontinuous at x}
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Let x € E. then by previous theorem,

f(x+)and f(x—) exists and f(x—) < f(x) < f(x+)
If f(x=) = f(x+) then f(x—) = f(x) = f(x+)

= fis continuous at x which is a contradiction.

“f (=) # fa+)

“f(x=) < fa+)

Now choose a rational number r(x) such that f(x—) <r(x) < f(x+).

This define a map r from E to Q which maps x to r(x).
Claim: ris 1-1

Let x1 < x2

~ f(x1+) < f(x2 —) (by previous theorem)

Also, f(x1—) <r(x1) = f(x1+)

And f(x2—) <r(xz) = f(x2+).

~r(x1) < f(x2 +)< f(xz —)<7r(x2).

Thus x1 < x2 = r(x1) < r(x2).

Therefore,r: E — Q is 1-1.Hence E is countable
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UNIT - IV
CONNECTEDNESS

Definition: Let (M, d) be a metric space. Mis said to be connected if M cannot be represented
as the union of two disjoint nonempty open sets.
If M is not connected it is to be disconnected.

Example: Let M = [1,2] U [3,4] with usual metric. Then M is disconnected.
Proof:

[1,2]and[3,4] are open in M.

Thus, M is the union of two disjoint nonempty open dets namely [1,2]and [3,4].
Hence M is disconnected.

Theorem 4.1:

Let (M, d) be a metric space. Then the following are equivalent.

i) M is connected.

ii) M cannot be written as the union of two disjoint nonempty closed sets.
iii) M cannot be written as the union of two nonempty sets A and B suchthat AN B=AN
B = ¢.

iv) M and ¢ are the only sets which are both open and closed in M.
Proof:

(i) =(ii)

Suppose (ii) is true.

~M=AU Bwheredand BareclosedA+ ¢,B+¢and AN B =¢.
~ A¢ = Band Bc = A.

Since A and B are closed, A and B¢ are open.

~ BandA are open.

Thus M is the union of two disjoint nonempty open sets.

~ Mis not connected which is a contradiction.

=~ (i)=>(ii)

(i) = (iii)

Suppose (iii) is not true.

ThenM =AU BwhereA+ ¢, B+ pandANB=ANB=¢.
Claim: A and B are closed.

Let x € A.

~xX&B (since ANB =¢)
~x €EA (since AUB =M)
ACA.

But A C A.

~ A = Aand hence A is closed.
Similarly B is closed.
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Now,ANB =ANB. (since A = A).
= ¢.
Thus M = A U Bwhere A # ¢, B # ¢, A and B are closed and A N B = ¢ which is
contradiction to (ii).
~(ii)=>(iii)
(iii) =(iv)
Suppose (iv) is not true.
Then there exists A © M such that A # M such that A # M and A # ¢ and A is both open and
closed.

Let B = Ac.

Then B is also both open and closed and B # ¢.
AlsoM =AUB.

Further AN B = AN Ac. (sinceA = Aand A = A°)

= ¢.
Similarly AN B= ¢.
~ M =AU BwhereA N B= ¢ = AN B which is a contradiction to (iii).
~(iii)=(iv).
(iv) =(i).
Suppose M is not connected.
~M=AUBwhereA# ¢,B #* ¢, Aand B areopenand AN B = ¢.

Then Bc = A.
Now, since B is open A is closed.
Also A+ ¢pand A # M. (since B # ¢)

~ Ais a proper non empty subset of M which is both open and closed which is a contradiction to
(iv).
~ (iv))=>(i).

Theorem 4.2

A metric space M is connected iff there does not exist a continuous function f from M onto the
discrete metric space {0,1}.

Proof: Suppose there exists a continuous function f from Monto {0,1}.

Since {0,1} is discrete,{0} and {1} are open.

~ A= f-1({0})andB = f-1({1}) are open in M.

Since f is onto, A and B are non empty.

ClearlyANB=¢and AU B =M.

Thus M = AU B where A and B are disjoint nonempty open sets.

~ Mis not connected which is a contradiction.

Hence there does not exist a continuous function from onto the discrete metric space {0,1}.
Conversely, suppose M is not connected.

Then, there exists a disjoint nonempty open sets A and B in M suchthat M = A U B.
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0Oif x €A

lifx €B

Now, define f: M — {0,1} by f(x) ={

Clearly f is onto.

Also, f~1(¢) = ¢, f~1({0}) = a, f1({1}) = B and f~1({0,1}) = M.

Thus the inverse image of every open set in {0,1} is open in M.

Hence f is continuous.

Thus there exists a continuous function f from M onto {0,1}.which is a contradiction.
Hence M is not connected.

Problem 4.3:

Let M be a metric space. Let A be a connected subset of M. If B is a subset of of M such that
A € B € Athen B is connected. In particular A is connected.

Solution: Suppose B is not connected.

Then B = B1U B2 where B1 # ¢, B2 # ¢, B1 N B2 = ¢ and B1 and B2z are open in B.
Now, since B1and Bz are open sets in B there exists open sets G1and Gz in M such that B1 =
GiNnBand B2=G2N B.

~B=B1UB2=(GiNnB)U (G2nB) =(G1U G2) N B.

~BCG1V Ga.

~ACG1 UG (since A< B)

~A=(G1VUG2) N A.

=(G1Nn A) U= (G1n A).

Now, Gi1N Aand G2 N A are open in A.

Further, (G1n A) U (Gz2n A) = (G1U G2) n A.

=(G1UG2) NB (since A S B)

=(GiNnB)N(G2nB)

=B1NBa.

= ¢.

~(G1NA)U(G2nA) = ¢.

Now, since A is connected, either GiNA=¢ or G2N A = ¢.

Without loss of generality let us assume that G1 N A = ¢.

Since G1is open in M, we have G1 N A = ¢.

~GiNB = ¢. (since B € A)

-~ B1 = ¢which is a contradiction.

Hence B is not connected.

4.2 Connected Subsets of R

Theorem 4.4:

A subspace of R is connected iff it is an interval.
Proof:

Let A be a connected subset of R.

Supposed is not an interval.
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Then there exists a, b, c € Rsuch that,a<b <canda, c € Abut b & A.
Let A1 = (—o0, b) N Aand A2 = (b, ©) N A.

Since (—, b) and (b, ) are open in R, A1 and Az are open sets in A.
Also, A1 N A2 = ¢pand A1U A2 = A.

Further a € Aiand ¢ € Aaz.

Hence A1 # ¢and Az # ¢.

Thus A is the union of two disjoint nonempty open sets Aiand Az.
Hence A is not connected which is a contradiction.

Hence A is an interval.

Conversely, let A be an interval.

Claim:4 is connected.

Suppose A is not connected.

Let A= A1U A2 where A1 # ¢, A2 # ¢, A1 N A2 = ¢p and A1 and Az are closed in A.
Choose x € Aiand z € Aa.

Since A1 N A2 = ¢ we have x # z.

Without loss of generality let us assume that x < z.

Now, since 4 is an interval we have [x, z] € A.

(i.e) [x, z] € A1 U Aa.

=~ Every element of [x, z] is either in A1 or in Az.

Now, let y = L. u. b. {[x, z] N A1}.

Clearly x <y <z.

Hence y € A.

Let € > 0 be given. Then by the definition of L. u. b. there exists t € [x, z] N A1 such that y —
e<t=sy.

~(y—gy+e)n(][x z] NAL) # ¢.

Yy E mf

LY E|[x z]N A

-y E A1

Again by the definition of y, y + ¢ € A2 forall e > 0 such thaty + e < z.
Ly €A,

LYy € A2 (sinceA:z is closed)

-~y € A1 N Az [ by(1) and (2) ] which is a contradiction since A1 N A2 = ¢.
Hence A is connected.

Theorem 4.5:

R is connected.

Proof:R = (—oo, @) is an interval.
~ Ris connected.
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4.3 Connectedness and Continuity Theorem 4.6:

Let M1 be a connected metric space. Let M2 be any metric space. Let f: M1 — Mz be a
continuous function. Then f(M1) is a connected subset of M2.
(i.e) Any continuous image of a connected set is connected.
Proof:
Let f(M1) = A so that f is function on M1onto A.
Claim:A is connected.
Suppose A is not connected. Then there exists a proper non empty subset of B of A which is
both open and closed in A.
~ f~1(B)is a proper nonempty subset of M1 which is both open and closed in M1.
Hence M1 is not connected which is contradiction.
Hence A is connected.
Theorem 4.7: Intermediate value theorem

Let f be a real valued continuous function defined on an interval I. Then f takes every

value between any two values it assumes
Proof:
Leta, b € Iand f(a) # f(b).
Without loss of generality we assume that f(a) < f(b).
Let c be such that f(a) < ¢ < f(b).
The interval I is a connected subset of R.
~ f(D)is a connected subset of R.  (by theorem 4.6)
~ f(Dis aninterval. (bytheorem 4.6)
Also f(a), f(b) € f(I). Hence [f(a), f(B)] < f(D).
~c€f() (since f(a) <c<f(bh))

~c= f(x)forsome x € I.

4.2 Compact Metric Spaces

Definition: Let M be a metric space. A family of open sets {Ga} in M is called an open cover for
Mif U Ga = M.

A subfamily of {G«} which itself is an open cover is called a subcover.

A metric space M is said to be compact if every open cover for M has finite subcover.

(i.e) for each family of open sets {G«} such that U G« = M, there exists a finite subfamily
{Ga, Ga, ... ...., G }suchthat U G =M.
1 n

2 i=1

Theorem 4.8:
Let M be a metric space. Let A € M. Ais compact iff given a family of open sets {Ga} in M such

that U G 2 A there exists a subfamily
Ga, Ga, ... ...., G suchthatUr G cA.

1 2 n i=1 i

Proof:
Let A be a compact subset of M.
Let {Ga} be a family of open sets in M such that U G« 2 A.
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Then (U Go) N A = A.

~U (GaN A) = A.

Also Ga N Ais openin A.

=~ The family {G« N A} is an open cover for A.
Since A is compact this open cover has a finite subcover, say, Ga, N 4, Ge,N A4, ... ..., Ga, N A.
= U1(Ge, N A) = A.

(UL, Ga,) NA=A.

=~ Uiz Gg E A

Conversely let {Ha} be an open cover for A.
~ Each He is open in A.

~ Ho = Ga N AwhereGeq is open in M.

Now, U He = A.

~U (GoNA) =A.

~ (UG NA=A.

~UGa 2 A.
Hence by hypothesis there exists a finite subfamily Ga, Ga, ... ...., Ga suchthatUm G, C A.

1 2 n i=1
2 (UL, Ga) N A=A
= U1 (Ge, N A) = A.
~ UL, He, = A
Thus {He,, Ha,, ... ...., Ha,} is a finite subcover of the open cover {Ha}.
-~ Ais compact.

Theorem 4.9:

Any compact subset A of a metric space M is bounded.
Proof:

Let xo0 € A.

Consider {B(xo0, n)|n € N}.

Clearly U~ B(xo,n) = M.

~ Uiy B(xo,n) 2 A.
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Since A is compact there exists a finite subfamily say, B(xo, n1), B(xo, n2), ... ... ...

such that Uk ; B(xo, n1) 2 A.

Let no = max{niy, nz, ... ..., nk}.
Then Uk ; B(xo, ni) = B(xo, no).
= B(x0, no) 2 A.

We know that B(xo, no) is a bounded set and a subset of a bounded set is bounded.

Hence A is bounded.

Theorem 4.10:
Any compact subset A of a metric space (M, d) is closed.
Proof:
To prove:A is closed. We shall prove that A¢ is open.
Lety € Acand let x € A. Thenx = y.
~dx,y)=rx>0.
1 1
It can be easily verified that B (x, 7x) N B (y, ;7x) = ¢.
Now consider the collection {B (x, %T'x) /x € A}.
Clearly Uxea B (x, erx) 2 A.

Since A is compact there exists a finite number of such open balls say,

B(x,l_r ),.....,B(x,ir ) such that Un B(x,ir )2 A - (1)
12X1 nzlxn i=1 ile‘
Now, letV=Nn» B (y,_1).
y i=1 2X

Clearly Vy is an open set containing y.
1 1 1

Since B (y, Ery) N (x, Z—rx) = ¢, we have V,, N B(x, Z—rxl.) =¢foreachi=1,2, .......

~VnluUnr B(x,ir )] = ¢.
y i=1 2 X
~VyNA=¢. (by (1)).
~Vy C Ac.
~ UyeacVy = Acand each Vy is open.

=~ Acis open. Hence A is closed.

Theorem 4.11:

A closed subspace of a compact metric space is compact.

Proof:

Let M be a compact metric space.

Let A be a nonempty closed subset of M.

Claim:A is compact.

Let {Ga/ a € I} be a family of open sets in M such that, Uger Ga 2 A.
% AU [Uger Ga] = M.

Also Ac is open. (sinceA is closed).

s {Ga/a € I} U {Ac}is an open cover for M.

Since M is compact it has a finite subcover say, Ga’I Ga T Ga
2 (Uiz1Ga) UAc= M.

Uit Go, 2 A.

LA
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-~ Ais compact.

4.3 Compact Subsets ofR.

Theorem 4.12: Heine-Borel Theorem

Any closed interval [a, b] is a compact subset of R.

Proof:

Let {Ga/ a € I} be a family of open sets in R such that U«er Ga 2 [a, b].

Let S = {x|x € [a, b] and [a, x]can be covred by a finite number of G’ s}.

Clearly a € S and hence S # ¢.

Also S is bounded above by b.

Let c denote the l. u. b.of S.

Clearly c € [a, b].

 C € Ga,for some a1 € 1.

Since G, is open, there exists € > 0 such that (c — &, ¢ + &) € Ga, .
Choose x1 € [a, b] such that x1 < cand [x1, ¢] € Ga, .

Now, since x; < ¢, [a, x1] can be covered by a finite number of G ,'s.
These finite number of G «'s together with G, covers [a, c].

~ By definition of S, c € S.

Now, we claim that ¢ = b.

Suppose ¢ # b.

Then choose x; € [a, b] such that x; > cand [c, x2] € G, .

As before,[a, xz] can be covered by a finite number of G «'s.
Hence x2 € S.

But x2 > ¢ which is a contradiction, since cis the l. u. b.of S.
~c=h.

= [a, b]can be covered by a finite number of G «'s.

= [a, b]is a compact subset of R.

Theorem 4.13:

Asubset of R is compact iff A is closed and bounded.

Proof:

If Ais compact then A is closed and bounded.

Conversely, let A be a subset of R which is closed and bounded.

Since A is bounded we can find a closed interval [a, b] such that A C [a, b].
Since A is closed in R, Ais closed in [a, b] also.

Thus A is a closed subset of the compact space [a, b].

Hence A is compact. (by theorem 4.11)
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UNIT -V
RIEMAN INTEGRAL

If I is the integral of real number, the length of I is denoted by |I].
Set of measure Zero:
A subset E C R is said to be a measure Zero if for each € > 0, there exists a finite (or)

countable number of open intervals, I1, I2, ............ such that E c U%_4 In.
Yoo |1In| <e&.
n=

Derivatives:
Let f be a real valued function defined on an Interval [a, b] € R. It is derivable at an interior

point ¢ € (a, b).
fO)—=f()

(i) If lim —— exists.
x—c¢c X—C

f(c+th)—f(c) .
lim exists.
h—0 h

Wherex=c+h—->x—c=h.
im 79774 called the left hand derivative = Lf'(c).
X—C

(i) li
X—C
(iii) lim OO is called the right hand derivative = Rf'(c)

X—C X—C

(iv)  If f'(c) =Lf'(c) =Rf'(c) then we say f(x)is derivable.
v fla)= lim+m.

Wiy  f(b) = lim OO

x—b~ x—b

Example 1:
Show that the function f(x) = x2 is derivable in [0,1].
Solution:
(i) Let xo0 €(0,1)
f'(xo) — it @@=t
X—X0 X—XQ
= fim X%
X—x0X—X0
|y =0
x-x0 ~ X—X0
= lim (x + x0) = x0 + X0 = 2xo.
X—=X0
~derivable exists an interior point.
(i £(0)=1lim @O

x—0t x—0

. x2—0
=lim
x—0+x—0

. 2
=lim X
x—-0tx

x—0t

~ f'(0)exists.
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i) f£(1) =1lim’ 27D

x—f x—1

. x%-1

= lim .

x—=f x—1
= lim (x+1)(x—1)

x—f (x—=1)

=lim(x+1)=1+1=2.

x—=f

o f'(D)exists.

Hence f(x) is differentiable in the closed interval (0,1).

Example 2:
A function f is defined on R where fgc L {

Solution:
x—-1" x—1
= lim XL
x—1—x—1
=lim 1.
x—-1"

A Lf(1) =1
RF (1) = lim /®~®

x—1t x—1
. 1-1
= lim ___.
x—1+tx—1

=0.

~Rf' (1) =0.

Lf'(1) # Rf'(1).

(i.e.) f'(1) does not exists.
fis not derivable at x =1.

Example 3:
Discuss the derivability of f(x) at 0, f(x) = |x|.
Solution:
LF(0) = lim T,
x—0~ B 560
=lim —
x—0" X
= lim =X
x—0" X
= lim 1.
x—=0"
Lf'(0) =-1.

Rf'(0) = lim +=H©,

x—0t x—0
. x—0
=lim __
x—0+tx—0
=lim = 1.
x—0+1

xif0<x<1

. Discuss the derivability at x = 1.
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~Rf(1)=1.

Lf'(1) # Rf'(1).

(i.e.) f'(0) does not exists.
fis not derivable at x =0.

Example 4:
xzsinxlifxio
fO)={ x
0Oifx=0
Prove that f is derivable at x = Obut lim f'(x) # f'(0).
x—0

Solution:
LF(0) = lim [®-f®
f(0) =lim —

x—0~
2 . 1
=lim X sm;—O
x—0~ x
Loxr 1
= lim _ sin _.
x-0" x X
. .1
=lim sin-=0.
x—0~ 0

L (0) = 0.
, . f(x)=£(0)
Rf'(0) =lim )
x—0t x—0
2 1
=lim X sin;—O
x—0+t x—0
. .1
=lim x%sin _
x-0t " x
= lim sinZ-
x—0* 0

~Rf'(1) =0.
Lf'(1) = Rf'(1).

Hence f is not derivable at x = 0.

Theorem:

A function which is derivable at a point is necessarily continuous at that point.
Proof:

Let a function f be derivable at x = c.

f)—f(©)
Then lim

X—C

To prove: f is continuous atx = c.f(x) — f(c) = FCO71@ o (x—o0)

lim[f(x) — £(0)] = lim[" @9 (x — )],

exist.

= im /O lim(x - ).
lim{f () = £(e)] = 0.

lim f(x) —lim f(c) = 0.

Tini f(x) = iclrri f(o).

Page 44 of 47



~lim f(x) = f(c).
X—C
- fis continuous in x = c.
Note:
Converse of this theorem need not be true.

Rolle’s theorem:
If a function f defined on [a, b] is,

(i) Continuous on [a, b].
(ii) Derivable on (a, b).
(iif f(a) = f(b)then there exists one real number c between a X b[a < ¢ < b] such that
f'(c)=0.
Proof:

Since the function is continuous on [a, b], it is bounded.

Let m and M are the infimum (g.l.b) and supremum (l.u.b) respectively of the function f then
there exists points c and d in [a, b] such that f(c¢) = mand f(d) = M.

Case (i):

Let m = M, then f is constant.

f(x) =M forall x € [a, b].

~f(x)=0forallx€[a,b].

For c € (a, b), f(c) =m, thatis f'(c) =0 for all c € (a, b).

Case (ii):

Letm = M.

Now both m and M cannot be equal to f(a).

fle)=m=#f(a)= c # a.

Similarly, f(c) =M # f(b) = c# b.

=c€(ab).

Claim: f'(c) = 0.

If f'(¢) < 0,there exists (¢, ¢ + 1) such that f(x) < f(c) =M for all x, x € (¢, ¢ + &1).
Which is a contradiction.

If f'(c) > 0,there exists (¢ — 81, ¢) such that f(x) < f(c) =M for all x, x € (c — 61, ¢).
Which is a contradiction.

Hence,f'(¢) = 0.

Legrange’s Mean Value Theorem
If a function f defined on [a, b] is,
(i) Continuous on [a, b].

(i) Derivable on (a, b).

f(a) = f(b)then there exists one real number ¢ between a X b[a < ¢ < b] such that f'(c) =
f)—f(@)

b—a
Proof:
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Let ¢(x) = f(x) + Ax where A is a constant such that ¢(a) = ¢(b).
Then f(a) + Aa= f(b) + Ab.

A(b — a) = f(a) — f(b).

= —[f(b) f(a)]

A = UBO-f@] .

b—a
Since ¢(x) is a sum of two continuous and derivable function.
(i) ¢is continuous on [a, b].

(ii) ¢is derivable on [a, b].

(i)  @(a) = d(b).

Therefore by Rolle’s theorem, there exists ¢ € (a, b) such that ¢'(¢) =0
(i.e) f(c)+A=0.

fle)=-4A

f( ) = f(bl J;(a)

Cauchy’s Mean Value Theorem:

If two functions f, g defined on [a, b] are
(i) Continuous on [a, b].

(il Derivable on [a, b].

(iii g'(x) # 0 forany x € (a, b) then there exists one real number c between a and b such
that f)—f(a) f(C)

g)—g@ g©

The Fundamental Theorem of Calculus:
A function f is bounded and integrable on [a, b] and there exists a function f such that f' =

f on[a,b]. Then [ f dx = f(b) - f(a).

Proof:

Given € > 0. There exists § > 0 such that for every partition P where,
P = {a = xo0, X1, ... «er « ., Xn—1, Xn = b}.

With P) — & (wh P) = Axi).
S S et €6 o1

=1 i i i -1 i
S SIL f(t) b = [, f dx. o (1)
By Lagrange’s Mean value Theorem,’ === = f(t)
Xi—Xi—1
(i.e). SCD=f i) _ f(t)
Ax;
= f(xi) — f(xi-1) = f(t)Axi. —-----mmmmmemmmm- (2)

Usmg 2)|n 1) weg

fa i—-1
fé’fdx=F(b) —F(a).

Ik
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