

Page 18 of $\mathbf{3 9}$

UNIT	CONTENT	PAGE
I	METRIC SPACES	02
II	CLOSED SETS	12
III	CONTINUOUS FUNCTIONS ON METRIC SPACES	26
IV	CONNECTEDNESS AND COMPACTNESS	34
V	RIEMANN INTEGRAL	42

UNIT - I
 METRIC SPACES

Introduction

A Metric Space is a set equipped with a reasonable concept of distance called a metric. That means to measure the distance between two elements in the set.

1.1 Definition and Examples

Definition:

A Metric Space is a non empty set M together with a function $\quad \boldsymbol{d}: \boldsymbol{M} \times \boldsymbol{M} \rightarrow \boldsymbol{R}$ satisfying the following conditions.
(i) $d(x, y) \geq 0$ for all $x, y \in M$
(ii) $d(x, y)=0$ if and only if $x=y$
(iii) $d(x, y)=d(y, x)$ for all $x, y \in M$
(iv) $d(x, z) \leq d(x, y)+d(y, z)$ for all $x, y, z \in M$ [Triangle Inequality]
d is called a metric or distance function on M and $\boldsymbol{d}(\boldsymbol{x}, \boldsymbol{y})$ is called the distance between x and y in M. The metric space M with the metric d is denoted by (M, d) or simply by M when the underlying metric is clear from the context.

Example 1.

(Usual Metric on R)
Let \boldsymbol{R} be the set of all real numbers. Define a function $d: M \times M \rightarrow R$ by $d(x, y)=|x-y|$. Prove that d is a metric on \boldsymbol{R}.

Proof.

$$
\text { Let } x, y \in \boldsymbol{R} \text {. }
$$

i) Clearly $\mathrm{d}(x, y)=|x-y| \geq 0$.
ii) $\quad d(x, y)=0 \Leftrightarrow|x-y|=0$

$$
\begin{aligned}
\Leftrightarrow & x-y & =0 \\
\Leftrightarrow & x & =y
\end{aligned}
$$

$\therefore d(x, y)=0 \Leftrightarrow x=y$
iii) $\quad d(x, y)=|x-y|$

$$
=|y-x|
$$

$$
=d(y, x)
$$

$\therefore d(x, y)=d(y, x)$.
iv) Let $x, y, z \in \boldsymbol{R}$.

$$
\begin{aligned}
d(x, z) & =|x-z| \\
& =|x-y+y-z| \\
& \leq|x-y|+|y-z| \\
& =d(x, y)+d(y, z) . \\
\therefore d(x, z) & \leq d(x, y)+d(y, z) .
\end{aligned}
$$

Hence d is a metric on \boldsymbol{R}.

Example 2

(Usual Metric on C)

Let C be the set of all Complex numbers. Define a function $d: M \times M \rightarrow \mathrm{C}$ by $d(\mathrm{z}, \mathrm{w})=|\mathrm{z}-\mathrm{w}|$ where $\mathrm{z}=\mathrm{x}+\mathrm{iy}$ and $\mathrm{w}=\mathrm{u}+\mathrm{iv}$. Prove that d is a metric on C .

Proof.
Let $\mathrm{z}, \mathrm{w} \in \mathrm{C}$.
i)

$$
\begin{aligned}
\mathrm{d}(\mathrm{z}, \mathrm{w}) & =|\mathrm{z}-\mathrm{w}| \\
& =\sqrt{(x-u)^{2}+(y-v)^{2}} \\
& \geq 0 .
\end{aligned}
$$

$$
\therefore \mathrm{d}(\mathrm{z}, \mathrm{w}) \geq 0 .
$$

ii) $\quad d(x, y)=0 \Leftrightarrow|\mathrm{z}-\mathrm{w}|=0$

$$
\begin{aligned}
& \Leftrightarrow \quad \sqrt{(x-u)^{2}+(y-v)^{2}} \\
& \Leftrightarrow \quad(x-u)^{2}+(y-v)^{2}=0 \\
& \Leftrightarrow \quad(x-u)^{2}=0 \text { and }(y-v)^{2}=0 \\
& \Leftrightarrow \quad(x-u)=0 \text { and }(y-v)=0 \\
& \Leftrightarrow \quad x=\mathrm{u} \text { and } \mathrm{y}=\mathrm{v} \\
& \Leftrightarrow \quad x+\mathrm{i} y=\mathrm{u}+\mathrm{iv}
\end{aligned}
$$

$$
\therefore d(\mathrm{z}, \mathrm{w})=0 \Leftrightarrow \mathrm{z}=\mathrm{w} .
$$

iii) $d(z, w)=|z-w|$

$$
=|w-z|
$$

$$
=d(\mathrm{w}, \mathrm{z})
$$

$$
\therefore d(\mathrm{z}, \mathrm{w})=d(\mathrm{w}, \mathrm{z})
$$

iv) Let $z, w, l \in C$.

$$
\begin{aligned}
& \mathrm{d}(\mathrm{z}, \mathrm{l})=|\mathrm{z}-\mathrm{l}| \\
&=|\mathrm{z}-\mathrm{l}+\mathrm{l}-\mathrm{w}| \\
& \leq|\mathrm{z}-\mathrm{l}|+|\mathrm{l}-\mathrm{w}| \\
&=\mathrm{d}(\mathrm{z}, \mathrm{l})+\mathrm{d}(\mathrm{l}, \mathrm{w}) \\
& \therefore \mathrm{d}(\mathrm{z}, \mathrm{l}) \leq \mathrm{d}(\mathrm{z}, \mathrm{l})+\mathrm{d}(\mathrm{l}, \mathrm{w})
\end{aligned}
$$

Hence d is a metric on C.

Example 3

(Discrete metric on \boldsymbol{M})
Let \boldsymbol{M} be any non-empty set. Define a function $\boldsymbol{d}: \boldsymbol{M} \times \boldsymbol{M} \rightarrow \boldsymbol{R}$ by
$\boldsymbol{d}(\boldsymbol{x}, \boldsymbol{y})=\left\{\begin{array}{l}0 \text { if } \boldsymbol{x}=\boldsymbol{y} \\ 1 \text { if } \boldsymbol{x} \neq \boldsymbol{y}\end{array} \quad\right.$ Prove that \boldsymbol{d} is a metric on \boldsymbol{M}.
Proof.
Let $x, y \in M$.
Clearly $d(x, y) \geq 0$
and $d(x, y)=0 \Leftrightarrow x=y$.

$$
\begin{aligned}
d(x, y) & =\left\{\begin{array}{l}
0 \text { if } x=y \\
1 \text { if } x \neq y
\end{array}\right. \\
& =\left\{\begin{array}{l}
0 \text { if } \mathrm{y}=\mathrm{x} \\
1 \text { if } \mathrm{y} \neq \mathrm{x}
\end{array}\right. \\
\therefore \mathrm{d}(\mathrm{x}, \mathrm{y}) & =d(y, x) .
\end{aligned}
$$

Let $x, y, z \in M$.
We shall prove that $d(x, z) \leq d(x, y)+d(y, z)$.
Case (i) Suppose $x=z$.
Then $(x, z)=0$
$d(x, y)+d(y, z) \geq 0$.
$\therefore d(x, z) \leq d(x, y)+d(y, z)$.
Case (ii) $\quad x \neq z$.
Then $d(x, z)=1$.
Also , since x, z are distinct, $\mathrm{y} \neq \mathrm{x}$ and $\mathrm{y} \neq \mathrm{z}$.
$\therefore d(x, y)+d(y, z) \geq 1$.
$\therefore d(x, z) \leq d(x, y)+d(y, z)$.
In the above cases, $d(x, z) \leq d(x, y)+d(y, z)$.
Hence d is metric on M.
Note:
By Minkowski 's Inequality, " If $\mathrm{p} \geq 1,\left[\sum_{i=1}^{n}|x+u|^{p}\right]^{1 / \mathrm{p}} \leq\left[\sum_{i=1}^{n}|x|^{p}\right]^{1 / \mathrm{p}}+\left[\sum_{i=1}^{n}|x|^{p}\right]^{1 / \mathrm{p}}$
Where $a_{1}, a_{2}, \ldots, a_{n}$ and $b_{1}, b_{2}, \ldots, b_{n}$ are real numbers.

Example 3

(Usual Metric on R^{n})

In R^{n} we define $\mathrm{d}(\mathrm{x}, \mathrm{y})=\left[\sum_{\boldsymbol{i}=\mathbf{1}}^{n}(\boldsymbol{x i}-\boldsymbol{y i})^{2}\right]^{1 / 2} \quad$ where $\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$. Prove that d is a metric on R^{n}.

Proof :

Given that

$$
\mathrm{d}(\mathrm{x}, \mathrm{y})=\left[\sum_{i=1}^{n}(\boldsymbol{x} \boldsymbol{i}-\boldsymbol{y} \boldsymbol{i})^{2}\right]^{1 / 2} \quad \text { where } \mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right) \text { and }
$$

$y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.
i) $\quad \mathrm{d}(x, y)=\left[\sum_{i=1}^{n}(x \boldsymbol{i}-\boldsymbol{y i})^{2}\right]_{1 / 2}^{1 / 2} \geq 0$.
ii) $\quad d(x, y)=0 \Leftrightarrow\left[\sum_{i=1}^{n}(x i-y i)^{2}\right]^{1 / 2}=0$

$$
\Leftrightarrow \quad \sum_{i=1}^{n}(x i-y i)^{2}=0
$$

$\Leftrightarrow(x i-y i)^{2}=0$ for each $\mathrm{i}=1,2, \ldots, \mathrm{n}$
$\Leftrightarrow \quad x \mathrm{i}-y \mathrm{i}=0 \quad$ for each $\mathrm{i}=1,2, \ldots, \mathrm{n}$
$\Leftrightarrow \quad x \mathrm{i}=y \mathrm{i} \quad$ for each $\mathrm{i}=1,2, \ldots, \mathrm{n}$
$\Leftrightarrow \quad \mathrm{x}=\mathrm{y}$.
$\therefore d(x, y)=0 \Leftrightarrow x=y$
iii) $\quad \mathrm{d}(x, y)=\left[\sum_{i=1}^{n}(x \boldsymbol{i}-\boldsymbol{y} \boldsymbol{i})^{2}\right]_{1 / 2}^{1 / 2}$

$$
\begin{aligned}
& =\left[\sum_{i=1}^{n}(y i-x i)^{2}\right]^{1 / 2} \\
& =\mathrm{d}(\mathrm{y}, \mathrm{x})
\end{aligned}
$$

iv) Let $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{R}^{\mathrm{n}}$.

To prove that $d(x, z) \leq d(x, y)+d(y, z)$
Take $a_{i}=x_{i}-y_{i}, b_{i}=y_{i}-z_{i}$ and $p=2$ and using

Minkowski 's Inequality, we have $\left[\sum_{i=1}^{n}|x i-y i|^{2}\right]^{1 / 2} \leq\left[\sum_{i=1}^{n}|x|^{2}\right]^{1 / 2}\left[\sum_{i=1}^{n}|x|^{2}\right]^{1 / 2}$
$\therefore \mathrm{d}(\mathrm{x}, \mathrm{z}) \leq \mathrm{d}(\mathrm{x}, \mathrm{y})+\mathrm{d}(\mathrm{y}, \mathrm{z})$
Hence d is a metric on R^{n}.

1.2.Open Sets in a Metric Space

Definition:

Let (M, d) be a metric space. Let $a \in M$ and r be a positive real number. The open ball or the open sphere with center a and radius r is denoted by $B_{d}(a, r)$ and is the subset of M defined by $B_{d}(a, r)=\{x \in M / d(a, x)<r\}$. We write $B(a, r)$ for $B_{d}(a, r)$ if the metric d under consideration is clear.

Examples:

1. In \boldsymbol{R} with usual metric $B(a, r)=(a-r, a+r)$.
2. In $\boldsymbol{R}^{\mathbf{2}}$ with usual metric $B(a, r)$ is the interior of the circle with center a and radius r.

Definition: Let (M, d) be a metric space. A subset A of M is said to be open in M if for each $x \in A$ there exists a real number $r>0$ such that $B(x, r) \subseteq A$.

Note. By the definition of open set, it is clear that ϕ and M are open sets.

Examples:

1. Any open interval (a, b) is an open set in \boldsymbol{R} with usual metric.

Proof:
Let $x \in(a, b)$.
Choose a real number r such that $0<r \leq \min \{x-a, b-x\}$.
Then $B(x, r) \subseteq(a, b)$.
$\therefore(a, b)$ is open in R.
2. Every subset of a discrete metric space M is open.

Proof:
Let A be a subset of M.
If $A=\phi$, then A is open.
Otherwise, let $x \in A$.
Choose a real number r such that $0<r \leq 1$. Then
$B(x, r)=\{x\} \subseteq A$ and hence A is open.
3. Set of all rational numbers \boldsymbol{Q} is not open in \boldsymbol{R}.

Proof:
Let $x \in \boldsymbol{Q}$.
For any real number $r>0, B(x, r)=(x-r, x+r)$ contains both rational and irrational numbers.
$\therefore B(x, r) \nsubseteq \boldsymbol{Q}$ and hence \boldsymbol{Q} is not open.

Theorem 1.1

Let (M, d) be a metric space. Then each open ball in M is an open set.

Proof.

Let $B(a, r)$ be an open ball in M.
Let $x \in B(a, r)$.
Then $d(a, x)<r$.
Taker $_{1}=r-d(a, x)$. Then $r_{1}>0$.
We claim that $B\left(x, r_{1}\right) \subseteq B(a, \mathrm{z})$.

Let $y \in B\left(x, r_{1}\right)$.
Then $(x, y)<r_{1}$.

Now,

$$
\begin{aligned}
& d(a, y) \leq d(a, x)+d(x, y) \\
&<d(a, x)+r_{1} \\
&=d(a, x)+r-d(a, x)=r . \\
& \therefore d(a, y)<r . \\
& \therefore y \in B(a, r) . \\
& \therefore B(x, r 1) \subseteq B(a, r) .
\end{aligned}
$$

Hence $B(a, r)$ is an open ball.

Theorem1.2

In any metric space M, the union of open sets is open.

Proof.

Let $(\boldsymbol{M}, \boldsymbol{d})$ be a Metric Space.
Let $\left\{A_{i} / i \in I\right\}$ a family of open sets in M .

We have to prove $A=\cup A_{i}$ is open in M .
If $A=\phi$ then A is open.
\therefore Let $A \neq \phi$. Let $x \in A$.
Then $x \in A_{i}$ for some $\in I$.
Since A_{i} is open, there exists an open ball $B(x, r)$ such that $B(x, r) \subseteq A_{i}$.
$\therefore B(x, r) \subseteq A$.
Hence A is open in M.

Theorem 1.3

In any metric space M, the intersection of a finite number of open sets is open.

Proof:

Let $A_{1}, A_{2}, \ldots, A_{n}$ be open sets in M .

We have to prove $A=A_{1} \cap A_{2} \cap \ldots . \cap A_{n}$ is open in M.

If $A=\phi$ then A is open.
\therefore Let $A \neq \phi$. Let $x \in A$.
Then $x \in A_{i}$ for each $i=1,2, \ldots, n$.
Since each A_{i} is open, there exists an open ball $B\left(x, r_{i}\right)$ such that $B\left(x, r_{i}\right) \subseteq A_{i}$.
Take $r=\min \left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$.
Clearly, $r>0$ and
$B(x, r) \subseteq B\left(x, r_{i}\right)$ for all $i=1,2, \ldots, n$.
Hence $B(x, r) \subseteq A_{i}$ for each $i=1,2, \ldots, n$.
$\therefore B(x, r) \subseteq A$.
\therefore Ais open in M.

Theorem 1.4

Let (M, d) be a metric space and $A \subseteq M$. Then A is open in M if and only if A can be expressed as union of open balls.

Proof :

Suppose that A is open in M.
Then for each $x \in A$ there exists an open ball $B\left(x, r_{x}\right)$ such that, $B\left(x, r_{x}\right) \subseteq A$.
$A=\bigcup_{x \in A} B\left(x, r_{x}\right)$.
Thus A is expressed as union of open balls.
Conversely, assume that A can be expressed as union of open balls. Since open balls are open and union of open sets is open, A is open.

1.2 Interior of a set

Definition:

Let (M, d) be a metric space and $A \subseteq M$. A point $x \in A$ is said to be an interior point of A if there exists a real number $r>0$ such that $B(x, r) \subseteq A$.

The set of all interior points is called as interior of A and it is denoted by Int A.

Note: $\boldsymbol{I n t} A \subseteq A$.

Example: $\ln \boldsymbol{R}$ with usual metric, let $A=[1,2]$. 1 is not an interior points of A , since for any real number $>0, B(1, r)=(1-r, 1+r)$ contains real numbers less than 1 .
Similarly, 2 is also not an interior point of A. In fact every point of $(1,2)$ is a limit point of A. Hence $\boldsymbol{I n t} A=(1,2)$.

Note:
(1)Int $\boldsymbol{\phi}=\boldsymbol{\phi}$ and $\boldsymbol{I n t} M=M$.
(2) A is open $\Leftrightarrow \boldsymbol{I n t} A=A$.
$(3) A \subseteq B \Rightarrow \boldsymbol{I n t} A \subseteq \boldsymbol{I n t} B$.

Theorem1.5

Let (M, d) be a metric space and $A \subseteq M$. Then Int $A=$ Union of all open sets contained in A.

Proof.
Let $G=\mathrm{U}\{\mathrm{B} / \mathrm{B}$ is an open set contained in A$\}$
we have to prove Int $A=G$.
Let $x \in \boldsymbol{I n t} A$.

Then x is an interior point of A.
\therefore there exists a real number $r>0$ such that $B(x, r) \subseteq A$.
Since open balls are open, $B(x, r)$ is an open set contained in A.
$\therefore B(x, r) \subseteq G$.
$\therefore x \in G$.
$\therefore \boldsymbol{I n t} A \subseteq G$

Let $\in G$.
Then there exists an open $\operatorname{set} B$ such that $B \subseteq A$ and $x \in B$.
Since B is open and $x \in B$, there exists a real number $r>0$ such that $B(x, r) \subseteq B \subseteq A$.
$\therefore x$ is an interior point of A.
$\therefore x \in \boldsymbol{I n t} A$.
$\therefore G \subseteq \boldsymbol{I n t} A$

From $\left(^{*}\right)$ and $\left({ }^{* *}\right)$, we get $\boldsymbol{I n t} A=G$.

Note:Int A is an open set and it is the largest open set contained in A.

Theorem1.6

Let M be a metric space and $A, B \subseteq M$. Then
i) $\quad \boldsymbol{\operatorname { l n t }}(A \cap B)=(\boldsymbol{\operatorname { I n t }} A) \cap(\boldsymbol{\operatorname { l n t }} A)$
ii) $\quad \boldsymbol{\operatorname { l n t }}(A \cup B) \supseteq(\boldsymbol{\operatorname { I n t }} A) \cup(\boldsymbol{\operatorname { l n t }} A)$

Proof.
i) $\quad A \cap B \subseteq A \Rightarrow \boldsymbol{I n t}(A \cap B) \subseteq \boldsymbol{I n t} A$.

Similarly, Int $(A \cap B) \subseteq \boldsymbol{I n t} B$.
$\therefore \boldsymbol{I n t}(A \cap B) \subseteq(\boldsymbol{\operatorname { I n t }} A) \cap(\boldsymbol{\operatorname { I n t }} A)$
$\boldsymbol{I n t} A \subseteq A$ and $\boldsymbol{I n t} B \subseteq B$.
$\therefore(\boldsymbol{\operatorname { I n t }} A) \cap(\boldsymbol{\operatorname { I n t }} A) \subseteq A \cap B$

Now, $(\boldsymbol{I n t} A) \cap(\boldsymbol{I n t} A)$ is an open set contained in $\cap B$.
But, $\boldsymbol{I n t}(A \cap B)$ is the largest open set contained in $\cap B$.
$\therefore(\boldsymbol{\operatorname { I n t }} A) \cap(\boldsymbol{\operatorname { I n t }} A) \subseteq \boldsymbol{\operatorname { I n t }}(A \cap B)$
From (a) and (b), we get $\boldsymbol{\operatorname { I n t }}(A \cap B)=(\boldsymbol{\operatorname { I n t }} A) \cap(\boldsymbol{\operatorname { I n t }} A)$
(ii) $A \subseteq A \cup B \Rightarrow \boldsymbol{I n t} A \subseteq \boldsymbol{\operatorname { n n t }}(A \cup B)$

Similarly, Int $\boldsymbol{B} \subseteq \boldsymbol{I n t}(A \cup B)$
$\therefore \boldsymbol{\operatorname { I n t }}(A \cup B) \supseteq(\boldsymbol{\operatorname { I n t }} A) \cup(\boldsymbol{\operatorname { I n t }} A)$

Note1.7: $\boldsymbol{I n t}(A \cup B)$ need not be equal to $\boldsymbol{I n t} A \cup \boldsymbol{I n t} A$
For,
In \boldsymbol{R} with usual metric,
Let $A=(0,1]$ and $B=(1,2)$.
Then $A \cup B=(0,2)$.
$\therefore \boldsymbol{\operatorname { I n t }}(A \cup B)=(0,2)$
Now, $\boldsymbol{I n t} A=(0,1)$ and $\boldsymbol{I n t} B=(1,2)$ and hence $\boldsymbol{I n t} A \cup \boldsymbol{I n t} A=(0,2)-\{2\}$.
$\therefore \boldsymbol{\operatorname { I n t }}(A \cup B) \neq(\boldsymbol{\operatorname { I n t }} A) \cup(\boldsymbol{\operatorname { I n t }} A)$

1.2.Subspace

Definition:

Let (M, d) be a metric space. Let M_{1} be a nonempty subset of M. Then M_{1} is also a metric space under the same metric d. We call $\left(M_{1}, d\right)$ is a subspace of (M, d).

Theorem1.8

Let M be a metric space and M_{1} a subspace of M. Let $A \subseteq M_{1}$. Then A_{1} is open in M_{1} if and only if $A_{1}=\mathrm{A} \cap M_{1}$ where A is open in M .

Proof:

Let $\boldsymbol{M}_{\mathbf{1}}$ be a subspace of \boldsymbol{M}. Let $\boldsymbol{a} \in \boldsymbol{M}_{\mathbf{1}}$.
Let $M_{1}(a, r)$ be the open ball in M_{1} with center a and radius r.
Then $B_{1}(a, r)=B(a, r) \cap M_{1}$ where $B(a, r)$ is the open ball in M with center a and radius r.
Then $B_{1}(a, r)=\left\{x \in M_{1} / d(a, x)<r\right\}$.
Also, $B(a, r)=\{x \in M / d(a, x)<r\}$.
Hence, $B_{1}(a, r)=B(a, r) \cap M_{1}$.
Let A_{1} be an open set in M_{1}.

$$
\text { Then } \begin{aligned}
\mathrm{A} & =\mathrm{B}_{1}(\mathrm{x}, \mathrm{r}(\mathrm{x})) \\
& =\mathrm{U}_{x \in A_{1}}\left[B(x, r(x)) \cap M_{1}\right] \\
& =\left[\mathrm{U}_{x \in A_{1}} B(x, r(x))\right] \cap M_{1} \\
& =\mathrm{A} \cap M_{1}
\end{aligned}
$$

Where $\mathrm{A}=\mathrm{U}_{x \in A_{1}} B(x, r(x))$ which is open in M.
Conversely, let $A=G \cap M_{1}$ where G is open in M.
We shall prove that A_{1} is open in M .
Let $x \in A_{1}$.
Then $x \in A$ and $x \in M_{1}$.
Since A is open in M, there exists an open ball $\mathrm{B}(\mathrm{x}, \mathrm{r})$ such that $\mathrm{B}(\mathrm{x}, \mathrm{r}) \subseteq \mathrm{A}$.
$\therefore B(x, r) M_{1} \cap \subseteq \cap M_{1}$.
i.e. $B_{1}(x, r) \subseteq M_{1}$.
$\therefore A_{1}$ is open in M_{1}.

1.2.Bounded Sets in a Metric space.

Definition:

Let (M, d) be a metric space. A subset A of M is said to be bounded if there exists a positive real number k such that $d(x, y) \leq k \forall x, y \in A$.

Example:

Any finite subset A of a metric space (M, d) is bounded.
For,
Let A be any finite subset of M.
If $A=\phi$, then A is obviously bounded.

Example:

$[0,1]$ is a bounded subset of \boldsymbol{R} with usual metric since $d(x, y) \leq 1$ for all $x, y \in[0,1]$.

Example:

$(0, \infty)$ is an unbounded subset of \boldsymbol{R}.
Example:
Any subset A of a discrete metric space M is bounded since
$d(x, y) \leq 1$ for all $x, y \in A$.
Note:
Every open ball $B(x, r)$ in a metric space (M, d) is bounded.

Definition:

Let (M, d) be a metric space and $A \subseteq M$. The diameter of A, denoted by $d(A)$, is defined by $d(A)=$ l.u. $b\{d(x, y) / x, y \in A\}$.

Example:

$\ln R$ with usual metric the diameter of any interval is equal to the length of the interval. The diameter of $[0,1]$ is 1 .

UNIT - II
 CLOSED SETS

2.1.ClosedSets

Definition:

A subset A of a metric space M is said to be closed in M if its complement A is open in M.

Examples

1. In \boldsymbol{R} with usual metric any closed interval $[a, b]$ is closed.

For,
$[a, b]^{c}=\boldsymbol{R}-[a, b]=(-\infty, a) \cup(b, \infty)$.
$(-\infty, a)$ and (b, ∞) are open sets in R and hence $(-\infty, a) \cup(b, \infty)$ is open in \mathbf{R}.
i.e. $[a, b]^{c}$ is open in \boldsymbol{R}.
$\therefore[a, b]$ is open in \boldsymbol{R}.
2. Any subset A of a discrete metric space M is closed since A^{c} is open as every subset of M Is open.

Note. In any metric space M, ϕ and M are closed sets since $\phi^{c}=M$ and $M^{c}=\phi$ which are open in M. Thus ϕ and M are both open and closed in M.

Theorem 2.1.

In any metric space M, the union of a finite number of closed sets is closed.

Proof:

Let ($\boldsymbol{M}, \boldsymbol{d}$) be a Metric space.
Let $\boldsymbol{B}[\boldsymbol{a}, \boldsymbol{r}]$ be a closed ball in \boldsymbol{M}.
Case (i) Suppose $B[\boldsymbol{a}, \boldsymbol{r}]^{c}=\boldsymbol{\phi}$
$\therefore \boldsymbol{B}[\boldsymbol{a}, \boldsymbol{r}]^{c}$ is open and hence $\boldsymbol{B}[\boldsymbol{a}, \boldsymbol{r}]$ is closed.
Case (ii) Suppose $\boldsymbol{B}[\boldsymbol{a}, \boldsymbol{r}]^{c} \neq \boldsymbol{\phi}$
Let $\boldsymbol{x} \in \boldsymbol{B}[\boldsymbol{a}, \boldsymbol{r}]^{c}$.
$\therefore x \notin B[a, r]^{c}$.
$\therefore d(a, x)>r$
$\therefore d(a, x)-r>0$.
Let $\boldsymbol{r}_{1}=\boldsymbol{d}(\boldsymbol{a}, \boldsymbol{x})-\boldsymbol{r}$.
We claim that $\boldsymbol{B}\left(\boldsymbol{x}, \boldsymbol{r}_{1}\right) \subseteq \boldsymbol{B}[\boldsymbol{a}, \boldsymbol{r}]^{c}$.
Let $\boldsymbol{y} \in \boldsymbol{B}\left(\boldsymbol{x}, \boldsymbol{r}_{1}\right)$.
Then $\boldsymbol{d}(\boldsymbol{x}, \boldsymbol{y})<\boldsymbol{r}_{1}=\boldsymbol{d}(\boldsymbol{a}, \boldsymbol{x})-\boldsymbol{r}$.
$\therefore d(a, x)>d(x, y)+r$.

Now, $\boldsymbol{d}(\boldsymbol{a}, \boldsymbol{x}) \leq \boldsymbol{d}(\boldsymbol{a}, \boldsymbol{y})+\boldsymbol{d}(\boldsymbol{y}, \boldsymbol{x})$.
$d(a, y) \geq d(a, x)-d(y, x)$.
$>d(x, y)+r-d(y, x)$.
$=r$.
Thus $\boldsymbol{d}(\boldsymbol{a}, \boldsymbol{y})>\boldsymbol{r}$.
$\therefore y \notin B[a, r]$.
Hence $\boldsymbol{y} \in \boldsymbol{B}[\boldsymbol{a}, \boldsymbol{r}]^{\boldsymbol{c}}$.
$\therefore B\left(x, r_{1}\right) \subseteq B[a, r]^{c}$.
$\therefore \boldsymbol{B}[\boldsymbol{a}, \boldsymbol{r}]^{\boldsymbol{c}}$ is open in \boldsymbol{M}.
$\therefore \boldsymbol{B}[\boldsymbol{a}, \boldsymbol{r}]$ is closed in \boldsymbol{M}.

Theorem 2.2

In any metric space M, arbitrary intersection of closed sets is closed.

Proof:

Let ($\boldsymbol{M}, \boldsymbol{d}$) be a metric space.
Let $\left\{\boldsymbol{A}_{\boldsymbol{i}} / \boldsymbol{i} \in \boldsymbol{I}\right\}$ be a family of closed sets in \boldsymbol{M}.
We have to prove $\bigcap_{i \in I} A_{i}$ is closed.
We have $\left(\bigcap_{i \in I} A_{i}\right)^{c}=\bigcup_{i \in I} A_{i}{ }^{c}$
(by De Morgan's law)
Since A_{i} is closed $A_{i}{ }^{c}$ is open.
Hence $\bigcup_{i \in I} A_{i}{ }^{c}$ is open.
$\therefore\left(\bigcap_{i \in I} A_{i}\right)^{c}$ is open in M.
$\therefore \bigcap_{i \in I} A_{i}$ is closed in M.

Theorem 2.3

Let M_{1} be a subspace of a metric space M. Let $F_{1} \subseteq M_{1}$. Then F_{1} is closed in M_{1} if and only if $F_{1}=F \cap M_{1}$ where F is a closed set in M.

Proof.
Suppose that F is closed in M_{1}.
Then $M_{1}-F_{1}$ is open in M_{1}.
$\therefore M_{1}-F_{1}=A^{c} \cap M_{1}$ where A is open in M.
Now, $F_{1}=A \cap M_{1}$.
Since A is open in M, A^{c} is closed in M.
Thus, $F_{1}=F \cap M_{1}$ where $F=A^{c}$ is closed in M.
Conversely, assume that $F_{1}=F \cap M_{1}$ where F is closed in M.
Since F is closed in M, F^{c} is open in M.
$\therefore F^{c} \cap M_{1}$ is open in M_{1}.

Now, $M_{1}-F_{1}=F^{c} \cap M_{1}$ which is open in M_{1}.
$\therefore F_{1}$ is closed in M_{1}.
Proof of the converse is similar.

2.1.Closure.

Definition:

Let A be a subset of a metric space (M, d). The closure of A, denoted by A is defined to be the intersection of all closed sets which contain A.
i.e. $A=\cap\{B / B$ is closed in M and $A \subseteq B\}$.

Note

(1) Since intersection of closed sets is closed, A is closed set.
(2) A is the smallest closed set containing A.
(3) A is closed $\Leftrightarrow \mathrm{A}=A$.

Theorem 2.4:

Let (M, d) be a metric space. Let $A, B \subseteq M$. Then
(i) $A \subseteq B \Rightarrow \bar{A} \subseteq \bar{B}$
(ii) $\overline{\mathrm{A} \cup \mathrm{B}}=\bar{A} \cup B$
(iii) $\overline{A \cap B} \subseteq \bar{A} \cap \bar{B}$

Proof:

(i) Let $\boldsymbol{A} \subseteq \boldsymbol{B}$,

Now $\quad \overline{\mathrm{B}} \supseteq B \supseteq A$.
Thus \bar{B} is a closed set containing A.
But \bar{A} is the smallest closed set containing A.
$\therefore \bar{A} \subseteq \bar{B}$
(ii) we have $A \subseteq A \cup B$.
$\therefore \overline{\mathrm{A}} \subseteq \overline{\mathrm{A} \cup \mathrm{B}}$. (by (i)).
Similarly $\quad \therefore \overline{\mathrm{B}} \subseteq \overline{\mathrm{A} \cup \mathrm{B}}$.
$\therefore \bar{A} \cup \bar{B} \subseteq \overline{\mathrm{~A} \cup B}$

Now \bar{A} is a closed set containing A and \bar{B} is a closed set containing B.
$\therefore \bar{A} \cup \overline{\mathrm{~B}} \quad$ is a closed set containing $A \cup B$.
But $\bar{A} \cup \overline{\mathrm{~B}} \quad$ is the smallest closed set containing $A \cup B$.
$\therefore \quad \overline{A \cup B} \subseteq \bar{A} \cup \overline{\mathrm{~B}} \longrightarrow$

From (1) and (2) we get
$\therefore \overline{A \cup B}=\bar{A} \cup \overline{\mathrm{~B}}$
(ii) We know that $A \cap B \subseteq A$

$$
\overline{A \cap B} \subseteq \bar{A} \quad(\text { by }(\mathrm{i}))
$$

Similarly $\quad \overline{A \cap B} \subseteq \overline{\mathrm{~B}}$
$\therefore \quad \overline{A \cap B} \subseteq \bar{A} \cap \bar{B}$

Note:

$\overline{A \cap B}$ need not be equal to $\bar{A} \cap \bar{B}$

2.1 Limit Point

Definition:

Let (M, d) be a Metric space. Let $A \subseteq M$. Let $x \in M$. Then x is called a limit point of A if every open ball with Centre \boldsymbol{x} contains at least one point of A differ from x.
(i.e) $B(x, r) \cap(A-\{x\}) \neq \phi$ for all $r>0$.

The set of all limit points of A is called the derived set of A and is denoted by $D(A)$

Theorem 2.4

Let (M, d) be a metric space and $A \subseteq M$. Then x is a limit point of A if and only if every open ball with center x contains infinite number of points of A.

Proof:

Let \boldsymbol{x} be a limit point of \boldsymbol{A}.
Suppose an open ball $\boldsymbol{B}(\boldsymbol{x}, \boldsymbol{r})$ contains only a finite number of points of \boldsymbol{A}.
$B(x, r) \cap(A-\{x\})=\left\{x_{1}, x_{2}, \ldots ., x_{n}\right\}$
let $\boldsymbol{r}_{1}=\boldsymbol{\operatorname { m i n }}\left\{\boldsymbol{d}\left(\boldsymbol{x}, \boldsymbol{x}_{\boldsymbol{i}}\right) / \boldsymbol{i}=\mathbf{1}, \mathbf{2}, \ldots, \boldsymbol{n}\right\}$.
Since $\boldsymbol{x} \neq \boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{d}\left(\boldsymbol{x}, \boldsymbol{x}_{\boldsymbol{i}}\right)>\mathbf{0}$ for all $\boldsymbol{i}=1,2, \ldots, \boldsymbol{n}$ and hence $\boldsymbol{r}_{\boldsymbol{1}}>\boldsymbol{0}$.
Also $B(x, r) \cap(\boldsymbol{A}-\{\boldsymbol{x}\})=\boldsymbol{\phi}$.
$\therefore \boldsymbol{x}$ is not a limit point of A which is a contradiction. Hence every ball with center \boldsymbol{x} contains infinite number of points of \boldsymbol{A}.

The converse is obvious.

Corollary 1: Any finite subset of a metric space has no limit points.

Theorem 2.5

Let \boldsymbol{M} be a metric space and $\boldsymbol{A} \subseteq \boldsymbol{M}$. Then $\overline{\boldsymbol{A}}=\boldsymbol{A} \cup \boldsymbol{D}(\boldsymbol{A})$.
Proof: Let $\boldsymbol{x} \in \boldsymbol{A} \cup \boldsymbol{D}(\boldsymbol{A})$. we shall prove that $\boldsymbol{x} \in \overline{\boldsymbol{A}}$
Suppose $\quad \boldsymbol{x} \notin \overline{\boldsymbol{A}}$
$\therefore \boldsymbol{x} \in \boldsymbol{M}-\overline{\boldsymbol{A}}$ and since $\overline{\boldsymbol{A}} \quad$ is closed $\boldsymbol{M}-\overline{\boldsymbol{A}}$ is open.
\therefore There exists an open ball $\boldsymbol{B}(\boldsymbol{x}, \boldsymbol{r}) \subseteq \boldsymbol{M}-\overline{\boldsymbol{A}}$
$\therefore B(\boldsymbol{x}, r) \cap \bar{A}=\boldsymbol{\phi}$.
$\therefore \boldsymbol{B}(\boldsymbol{x}, \boldsymbol{r}) \cap \boldsymbol{A}=\boldsymbol{\phi} .($ since $\boldsymbol{A} \subseteq \overline{\mathrm{A}})$
$\boldsymbol{x} \notin \boldsymbol{A} \cup \boldsymbol{D}(\boldsymbol{A})$ which is a contradiction.
$\therefore x \in \bar{A}$
$\therefore \boldsymbol{A} \cup \boldsymbol{D}(\boldsymbol{A}) \subseteq \overline{\boldsymbol{A}}$
Now let $\boldsymbol{x} \in \overline{\boldsymbol{A}}$
To prove $\boldsymbol{x} \in \boldsymbol{A} \cup \boldsymbol{D}(\boldsymbol{A})$.
If $x \in A$.
clearly $x \in A \cup D(A)$.
Suppose $\boldsymbol{x} \notin \boldsymbol{A}$. We claim that $\boldsymbol{x} \in \boldsymbol{D}(\boldsymbol{A})$.
Suppose $\boldsymbol{x} \notin \boldsymbol{D}(\boldsymbol{A})$. Then there exists an open ball $\boldsymbol{B}(\boldsymbol{x}, \boldsymbol{r})$ such that $\boldsymbol{B}(\boldsymbol{x}, \boldsymbol{r}) \cap \boldsymbol{A}=\boldsymbol{\phi}$.
$\therefore \boldsymbol{B}(\boldsymbol{x}, \boldsymbol{r})^{c} \supseteq \boldsymbol{A}$ and $\boldsymbol{B}(\boldsymbol{x}, \boldsymbol{r})^{c}$ is closed.
But $\overline{\boldsymbol{A}}$ is the smallest closed set containing A.
$\therefore \bar{A} \subseteq B(x, r)^{c}$.
But $\boldsymbol{x} \in \overline{\boldsymbol{A}}$ and $\boldsymbol{x} \notin \boldsymbol{B}(\boldsymbol{x}, \boldsymbol{r})^{c}$ which is a contradiction.
Hence $\boldsymbol{x} \in \boldsymbol{D}(\boldsymbol{A})$.
$\therefore x \in A \cup D(A)$.
$\therefore \bar{A} \subseteq A \cup D(A)$
Hence $: \boldsymbol{A} \cup \boldsymbol{D}(\boldsymbol{A})=\boldsymbol{A}$
Corollary 1: \boldsymbol{A} is closed iff \boldsymbol{A} contains all its limit points. (i.e.) \boldsymbol{A} is closed iff $\boldsymbol{D}(\boldsymbol{A}) \subseteq \boldsymbol{A}$.
Proof: \boldsymbol{A} is closed $\Leftrightarrow \boldsymbol{A}=\boldsymbol{A}$ (by theorem 2.13)
$\Leftrightarrow \boldsymbol{A}=\boldsymbol{A} \cup \boldsymbol{D}(\boldsymbol{A})$.
$\Leftrightarrow D(A) \subseteq A$.
Corollary 2: $\boldsymbol{x} \in \boldsymbol{A} \Leftrightarrow \boldsymbol{B}(\boldsymbol{x}, \boldsymbol{r}) \cap \boldsymbol{A} \neq \boldsymbol{\phi}$ for all $\boldsymbol{r}>\mathbf{0}$.
Proof: let $\boldsymbol{x} \in \boldsymbol{A} \boldsymbol{A}$ then $\boldsymbol{x} \in \boldsymbol{A} \cup \boldsymbol{D}(\boldsymbol{A})$.
$\therefore x \in A$ or $x \in D(A)$.
If $x \in A$ then $x \in B(x, r) \cap A$.
if $\boldsymbol{x} \in \boldsymbol{D}(\boldsymbol{A})$ then $\boldsymbol{B}(\boldsymbol{x}, \boldsymbol{r}) \cap \boldsymbol{A} \neq \boldsymbol{\phi}$ for all $\boldsymbol{r}>\mathbf{0}$.
Hence in both cases $\boldsymbol{B}(\boldsymbol{x}, \boldsymbol{r}) \cap \boldsymbol{A} \neq \boldsymbol{\phi}$ for all $\boldsymbol{r}>\mathbf{0}$.
Conversely Suppose $\boldsymbol{B}(\boldsymbol{x}, \boldsymbol{r}) \cap \boldsymbol{A} \neq \boldsymbol{\phi}$ for all $\boldsymbol{r}>\mathbf{0}$.
We have to prove that, $\boldsymbol{x} \in \overline{\boldsymbol{A}}$
If $\boldsymbol{x} \in \boldsymbol{A}$ trivially $\boldsymbol{x} \in \boldsymbol{A}$
Let $\boldsymbol{x} \notin \boldsymbol{A}$. Then $\boldsymbol{A}-\{\boldsymbol{x}\}=\boldsymbol{A}$.
$\therefore B(x, r) \cap A-\{x\} \neq \boldsymbol{\phi}$.
$\therefore x \in D(A)$.
$\therefore x \in \bar{A}$

Corollary 3:

$\boldsymbol{x} \in \boldsymbol{A} \Leftrightarrow \boldsymbol{G} \cap \boldsymbol{A} \neq \boldsymbol{\phi}$ for every open set \boldsymbol{G} containing \boldsymbol{x}.
Dense sets Proof:
Let $\boldsymbol{x} \in \boldsymbol{A} \boldsymbol{A}$
Let \boldsymbol{G} be an open set containing \boldsymbol{x}.then there exists $\boldsymbol{r}>\mathbf{0}$ such that $\boldsymbol{B}(\boldsymbol{x}, \boldsymbol{r}) \subseteq \boldsymbol{G}$.
Also, since $\boldsymbol{x} \in \boldsymbol{A}, \boldsymbol{B}(\boldsymbol{x}, \boldsymbol{r}) \cap \boldsymbol{A} \neq \boldsymbol{\phi}$.
$\therefore G \cap A \neq \boldsymbol{\phi}$.
Conversely suppose $\boldsymbol{G} \cap \boldsymbol{A} \neq \boldsymbol{\phi}$ for every open set \boldsymbol{G} containing \boldsymbol{x}.
Since $\boldsymbol{B}(\boldsymbol{x}, \boldsymbol{r})$ is an open set containing \boldsymbol{x}, we have $\boldsymbol{B}(\boldsymbol{x}, \boldsymbol{r}) \cap \boldsymbol{A} \neq \boldsymbol{\phi}$.
$\therefore \boldsymbol{x} \in \mathcal{A}_{\boldsymbol{A}}$

Definition:

A subset \boldsymbol{A} of a metric space \boldsymbol{M} is said to be dense in \boldsymbol{M} or every where dense if $\boldsymbol{A}=\boldsymbol{M}$.

Definition:

A metric space \boldsymbol{M} is said to be separable if there exists a countable dense subset in \boldsymbol{M}.

Note :

(1) Any countable metric space is separable.
(2) Any uncountable discrete metric space is not separable.

Theorem 2.6:

Let \boldsymbol{M} be a metric space and $\boldsymbol{A} \subseteq \boldsymbol{M}$. Then the following are equivalent.
(i) $\quad \boldsymbol{A}$ is dense in \boldsymbol{M}.
(ii) The only closed set which contains \boldsymbol{A} is \boldsymbol{M}.
(iii) The only open set disjoint from \boldsymbol{A} is $\boldsymbol{\phi}$.
(iv) \boldsymbol{A} intersects every non empty open set.
(v) \boldsymbol{A} intersects every open ball.

Proof:

(i) \Rightarrow (ii).

Suppose \boldsymbol{A} is dense in M.
We claim that The only closed set which contains \boldsymbol{A} is \boldsymbol{M}.
Suppose \boldsymbol{A} is dense in \boldsymbol{M}.
Then $\boldsymbol{A}=\boldsymbol{M}$.
Now, let $\boldsymbol{F} \subseteq \boldsymbol{M}$ be closed set containing \boldsymbol{A}.
Since $\overline{\boldsymbol{A}}$ is a closed set containing \boldsymbol{A}, we have $\overline{\mathrm{A}} \subseteq \mathrm{F}$.
Hence $\boldsymbol{M} \subseteq \boldsymbol{F}$. (by (1))
$\therefore \boldsymbol{M}=\boldsymbol{F}$.
Hence, the only closed set which contains \boldsymbol{A} is \boldsymbol{M}.
(iii) \Rightarrow (iii)

Suppose the only closed set which contains A is
M
We claim that The only open set disjoint from \boldsymbol{A}
is ϕ.
Suppose (iii) is not true.
Then there exists a non empty open set \boldsymbol{B} such that, $\boldsymbol{B} \cap \boldsymbol{A}=\boldsymbol{\phi}$.
$\therefore \boldsymbol{B}^{\boldsymbol{c}}$ is closed set and $\boldsymbol{B}^{\boldsymbol{c}} \supseteq \boldsymbol{A}$.
Further, since $\boldsymbol{B} \neq \boldsymbol{\phi}$ we have $\boldsymbol{B}^{\boldsymbol{c}} \neq \boldsymbol{M}$ which is a contradiction to (ii).
Hence (ii) \Rightarrow (iii).
Obviously, (iii) \Rightarrow (iv).
(iv) $\Rightarrow(v)$, since every open ball is an open set.
(iv) $\Rightarrow(i)$

Suppose \boldsymbol{A} intersects every non empty open set.
We claim that \boldsymbol{A} intersects every open ball
Let $\boldsymbol{x} \in \boldsymbol{M}$. Suppose every open ball $\boldsymbol{B}(\boldsymbol{x}, \boldsymbol{r})$ intersects \boldsymbol{A}.
Then by corollary, $\boldsymbol{x} \in \boldsymbol{A}$
$\therefore \boldsymbol{M} \subseteq \overline{\boldsymbol{A}}$
But trivially $\overline{\boldsymbol{A}} \subseteq \boldsymbol{M}$.
$\therefore \boldsymbol{A}=\boldsymbol{M}$.
\therefore Ais dense in \boldsymbol{M}.

2.1. Completeness

Definition:

let $(\boldsymbol{M}, \boldsymbol{d})$ be a metric space. Let $\left(\boldsymbol{x}_{n}\right)=\boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{n}, \ldots$ be a sequence of points in
\boldsymbol{M}. Let $\boldsymbol{x} \in \boldsymbol{M}$. We say that $\left(\boldsymbol{x}_{\boldsymbol{n}}\right)$ converges to \boldsymbol{x} if given $\boldsymbol{\varepsilon}>0$ there exists a positive integer $\boldsymbol{n}_{\mathbf{0}}$ such that $\boldsymbol{d}\left(\boldsymbol{x}_{\boldsymbol{n}}, \boldsymbol{x}\right)<\boldsymbol{\varepsilon}$ for all $\boldsymbol{n} \geq \boldsymbol{n}_{\mathbf{0}}$. Also \boldsymbol{x} is called a limit of $\left(\boldsymbol{x}_{\boldsymbol{n}}\right)$.

If $\left(x_{n}\right)$ converges to x we write $\lim _{n \rightarrow \infty} x_{n}=x$ or $\left(x_{n}\right) \rightarrow x$.
Note 1: $\left(\boldsymbol{x}_{\boldsymbol{n}}\right) \rightarrow \boldsymbol{x}$ iff for each open ball $\boldsymbol{B}(\boldsymbol{x}, \boldsymbol{\varepsilon})$ with Centre \boldsymbol{x} there exists a positive integer $\boldsymbol{n}_{\mathbf{0}}$ such that $\boldsymbol{x}_{\boldsymbol{n}} \in \boldsymbol{B}(\boldsymbol{x}, \boldsymbol{\varepsilon})$ for all $\boldsymbol{n} \geq \boldsymbol{n}_{\mathbf{0}}$.

Thus the open ball $\boldsymbol{B}(\boldsymbol{x}, \boldsymbol{\varepsilon})$ contains all but a finite number of terms of the sequence.
Note 2: $\left(\boldsymbol{x}_{\boldsymbol{n}}\right) \rightarrow \boldsymbol{x}$ iff the sequence of real numbers $\boldsymbol{d}\left(\left(\boldsymbol{x}_{\boldsymbol{n}}, \boldsymbol{x}\right)\right) \rightarrow \mathbf{0}$.

Theorem2.6:

For a convergent sequence ($\boldsymbol{x}_{\boldsymbol{n}}$) the limit is unique.
Proof: Suppose $\left(\boldsymbol{x}_{\boldsymbol{n}}\right) \rightarrow \boldsymbol{x}$ and $\left(\boldsymbol{x}_{\boldsymbol{n}}\right) \rightarrow \boldsymbol{y}$.
Let $\boldsymbol{\varepsilon}>\underline{\boldsymbol{0}}$ be given. Then there exist positive integers $\boldsymbol{n}_{\mathbf{1}}$ and $\boldsymbol{n}_{\mathbf{2}}$ such that
$\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}\right)<\boldsymbol{\varepsilon} / 2$ for all $\mathrm{n} \geq \mathrm{n}_{1}$ and $\mathrm{d}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}\right)<\boldsymbol{\varepsilon} / 2$ for all $\mathrm{n} \geq \mathrm{n}_{2}$.
Let for all \boldsymbol{m} be a positive integer such that for all $\boldsymbol{m} \geq \boldsymbol{n}_{1}, \boldsymbol{n}_{\mathbf{2}}$.
Then

$$
\begin{aligned}
\boldsymbol{d}(\boldsymbol{x}, \boldsymbol{y}) & \leq \boldsymbol{d}\left(\boldsymbol{x}, \boldsymbol{x}_{\boldsymbol{m}}\right)+\boldsymbol{d}\left(\boldsymbol{x}_{\boldsymbol{m}}, \boldsymbol{y}\right) \\
& <\boldsymbol{\varepsilon} / 2+\varepsilon / 2 \\
& =\boldsymbol{\varepsilon} \\
\therefore \boldsymbol{d}(x, y) \quad & <\varepsilon .
\end{aligned}
$$

Since $\boldsymbol{\varepsilon}>\mathbf{0}$ is arbitrary, $\boldsymbol{d}(\boldsymbol{x}, \boldsymbol{y})=\mathbf{0}$.
$\therefore \boldsymbol{x}=\boldsymbol{y}$.

Theorem 2.7

Let \boldsymbol{M} be a metric space and $\boldsymbol{A} \subseteq \boldsymbol{M}$. Then
(i) $\quad \boldsymbol{x} \in \boldsymbol{A} \quad$ iff there exists a sequence $\left(\boldsymbol{x}_{\boldsymbol{n}}\right)$ in \boldsymbol{A} such that $\left(\boldsymbol{x}_{\boldsymbol{n}}\right) \rightarrow \boldsymbol{x}$.
(ii) \boldsymbol{x} is a limit point of \boldsymbol{A} iff there exists a sequence $\left(\boldsymbol{x}_{\boldsymbol{n}}\right)$ of distinct points in \boldsymbol{A} such that $\left(x_{n}\right) \rightarrow \boldsymbol{x}$.

Proof:
Let $\boldsymbol{x} \in \boldsymbol{A}$
Then, $\boldsymbol{x} \in \boldsymbol{A} \cup \boldsymbol{D}(\boldsymbol{A}) \quad$ (by the above theorem)
$\therefore x \in A$ or $x \in D(A)$
If $\boldsymbol{x} \in \boldsymbol{A}$, then the constant sequence $\boldsymbol{x}, \boldsymbol{x}, \ldots \ldots$... Is a sequence in \boldsymbol{A} converging to \boldsymbol{x}.
If $\boldsymbol{x} \in \boldsymbol{D}(\boldsymbol{A})$ then the open ball $\boldsymbol{B}(\boldsymbol{x}, \mathbf{1} / \boldsymbol{n})$ contains infinite number of points of \boldsymbol{A} (by theorem)
\therefore We can choose $\boldsymbol{x}_{\boldsymbol{n}} \in \boldsymbol{B}(\boldsymbol{x}, \mathbf{1} / \boldsymbol{n}) \cap \boldsymbol{A}$ such that $\boldsymbol{x}_{\boldsymbol{n}} \neq \boldsymbol{x}_{\mathbf{1}}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{n}-\mathbf{1}}$ for each \boldsymbol{n}.
$\therefore\left(\boldsymbol{x}_{n}\right)$ is a sequence of distinct points in \boldsymbol{A}. Also $\boldsymbol{d}\left(\boldsymbol{x}_{n}, \boldsymbol{x}\right)<\frac{1}{\boldsymbol{n}}$ for all \boldsymbol{n}.
$\therefore \lim d\left(x_{n}, \boldsymbol{x}\right)=\mathbf{0}$.
$x \rightarrow \infty$
$\therefore\left(\boldsymbol{x}_{\boldsymbol{n}}\right) \rightarrow \boldsymbol{x}$.
Conversely, suppose there exists a sequence $\left(\boldsymbol{x}_{\boldsymbol{n}}\right)$ in \boldsymbol{A} such that $\left(\boldsymbol{x}_{\boldsymbol{n}}\right) \rightarrow \boldsymbol{x}$.
Then for any $\boldsymbol{r}>\mathbf{0}$ there exists a positive integer $\boldsymbol{n}_{\mathbf{0}}$ such that $\boldsymbol{d}\left(\boldsymbol{x}_{\boldsymbol{n}}, \boldsymbol{x}\right)<\boldsymbol{r}$ for all $\boldsymbol{n} \geq \boldsymbol{n}_{\mathbf{0}}$.
$\therefore \boldsymbol{x}_{\boldsymbol{n}} \in \boldsymbol{B}(\boldsymbol{x}, r)$ for all $\boldsymbol{n} \geq \boldsymbol{n} \mathbf{0}$.
$\therefore B(x, r) \cap A \neq \boldsymbol{\phi}$
$\therefore \boldsymbol{x} \in \boldsymbol{A}_{\boldsymbol{A}}^{\boldsymbol{A}} \quad$ (by corollary 2)
Further if $\left(\boldsymbol{x}_{n}\right)$ is a sequence of distinct points, $\boldsymbol{B}(\boldsymbol{x}, \boldsymbol{r}) \cap \boldsymbol{A}$ is infinite.
$\therefore x \in D(A)$.
$\therefore \boldsymbol{x}$ is a limit point of \boldsymbol{A}.
Definition: Let $(\boldsymbol{M}, \boldsymbol{d})$ be a metric space. let $\left(\boldsymbol{x}_{\boldsymbol{n}}\right)$ be a sequence of points in $\boldsymbol{M} .\left(\boldsymbol{x}_{\boldsymbol{n}}\right)$ is said to be a Cauchy sequence in \boldsymbol{M} if given $\boldsymbol{\varepsilon}>\boldsymbol{0}$ there exists a positive integer \boldsymbol{n}_{0} such that $\boldsymbol{d}\left(\boldsymbol{x}_{\boldsymbol{m}}, \boldsymbol{x}_{\boldsymbol{n}}\right)$ $<\boldsymbol{\varepsilon}$ for all $\boldsymbol{m}, \boldsymbol{n} \geq \boldsymbol{n}_{\mathbf{0}}$.

Theorem 2.7:

Let $(\boldsymbol{M}, \boldsymbol{d})$ be a metric space. Then any convergent sequence in M is a Cauchy sequence.

Proof:

Let ($\boldsymbol{x}_{\boldsymbol{n}}$) be a convergent sequence of points in \boldsymbol{M} converging to $\boldsymbol{x} \in \boldsymbol{M}$.
Let $\boldsymbol{\varepsilon}>\mathbf{0}$ be given.
Then there exists a positive integer $\boldsymbol{n}_{\mathbf{0}}$ such that $\left(\boldsymbol{x}_{\boldsymbol{n}}, \boldsymbol{x}\right)<{ }_{2}^{1} \boldsymbol{\varepsilon}$ for all $\boldsymbol{n} \geq \boldsymbol{n}_{\mathbf{0}}$.
Therefore, $d\left(x_{n}, x_{m}\right) \leq \boldsymbol{d}\left(x_{n}, \boldsymbol{x}\right)+\boldsymbol{d}\left(\boldsymbol{x}, x_{m}\right)$
$<{ }_{\overline{2}}^{1} \varepsilon+{ }_{\overline{2}}^{1} \varepsilon$ for all $m, n \geq n_{0}$
$=\boldsymbol{\varepsilon f o r}$ all $\boldsymbol{m}, \boldsymbol{n} \geq \boldsymbol{n}_{\mathbf{0}}$.
$\therefore \boldsymbol{d}\left(\boldsymbol{x}_{\boldsymbol{n}}, \boldsymbol{x}_{\boldsymbol{m}}\right)<\boldsymbol{\varepsilon}$. for all $\boldsymbol{m}, \boldsymbol{n} \geq \boldsymbol{n}_{\mathbf{0}}$.
$\therefore\left(\boldsymbol{x}_{\boldsymbol{n}}\right)$ is a convergent sequence.

Note:

The converse of the above theorem is not true.

Definition:

A metric space \boldsymbol{M} is said to be complete if every Cauchy sequence in \boldsymbol{M} converges to a point in \boldsymbol{M}.

Theorem 2.8: (Canton's Intersection Theorem)
Let \boldsymbol{M} be a metric space. \boldsymbol{M} is complete iff for every sequence ($\boldsymbol{F} \boldsymbol{n}$) of nonempty closed subsets of \boldsymbol{M} such that
$\mathrm{F}_{1} \supseteq \boldsymbol{F}_{2} \supseteq \cdots \supseteq \boldsymbol{F}_{\boldsymbol{n}} \supseteq \cdots$ and $\boldsymbol{d}\left(\left(\boldsymbol{F}_{\boldsymbol{n}}\right)\right) \rightarrow \mathbf{0} . \cap \mathrm{n}=1^{\infty} \quad \boldsymbol{F}_{\boldsymbol{n}}$ is nonempty.
Proof:
Let \boldsymbol{M} be a complete metric space.
Let $\left(\boldsymbol{F}_{\boldsymbol{n}}\right)$ be a sequence of closed subsets of \boldsymbol{M} such that
$F_{1} \supseteq F_{2} \supseteq \cdots \supseteq F_{n} \supseteq \cdots$
and $\boldsymbol{d}\left(\left(\boldsymbol{F}_{\boldsymbol{n}}\right)\right) \rightarrow \mathbf{0}$.
we claim that.$\bigcap_{n=1}^{\infty} \boldsymbol{F}_{\text {nis }}$ nonempty.
For each positive integer \boldsymbol{n}, choose a point $\boldsymbol{x}_{\boldsymbol{n}} \in \boldsymbol{F}_{\boldsymbol{n}}$.
By (1), $\boldsymbol{x}_{\boldsymbol{n}}, \boldsymbol{x}_{\boldsymbol{n}+1}, \boldsymbol{x}_{\boldsymbol{n}+2}, \ldots$. all lies in $\boldsymbol{F}_{\boldsymbol{n}}$.
(i.e) $\boldsymbol{x}_{\boldsymbol{m}} \in \boldsymbol{F}_{\boldsymbol{n}}$ for all $\boldsymbol{m} \geq \boldsymbol{n}$

Since $\left(\boldsymbol{d}\left(\boldsymbol{F}_{\boldsymbol{n}}\right)\right) \rightarrow \mathbf{0}$, given $\boldsymbol{\varepsilon}>\mathbf{0}$, there exists a positive integer $\boldsymbol{n}_{\mathbf{0}}$, such that $\boldsymbol{d}\left(\boldsymbol{F}_{\boldsymbol{n}}\right)<\boldsymbol{\varepsilon}$ for all $\boldsymbol{n} \geq \boldsymbol{n}_{\mathbf{0}}$.

In particular $\boldsymbol{d}\left(\boldsymbol{F}_{\boldsymbol{n}_{0}}\right)<\boldsymbol{\varepsilon}$
$\therefore \boldsymbol{d}(\boldsymbol{x}, \boldsymbol{y})<\boldsymbol{\varepsilon}$ for all $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{F}_{\boldsymbol{n}}$.
Now, $\boldsymbol{x}_{\boldsymbol{m}} \in \boldsymbol{F}_{\boldsymbol{n}_{\mathbf{0}}}$ for all $\boldsymbol{m} \geq \boldsymbol{n}_{\mathbf{0}} . \quad$ (by(3))
$\therefore \boldsymbol{m}, \boldsymbol{n} \geq \boldsymbol{n}_{\mathbf{0}} \Rightarrow \boldsymbol{x}_{\boldsymbol{m}}, \boldsymbol{x}_{\boldsymbol{n}} \in \boldsymbol{F}_{n_{0}}$.
$\Rightarrow \boldsymbol{d}\left(\boldsymbol{x}_{\boldsymbol{m}}, \boldsymbol{x}_{\boldsymbol{n}}\right)<\boldsymbol{\varepsilon} . \quad(\mathrm{by}(4))$
$\therefore\left(\boldsymbol{x}_{\boldsymbol{n}}\right)$ is a Cauchy sequence in \boldsymbol{M}.
Since \boldsymbol{M} is complete there exists a point $\boldsymbol{x} \in \boldsymbol{M}$ such that $\left(\boldsymbol{x}_{\boldsymbol{n}}\right) \rightarrow \boldsymbol{x}$.
We claim that $\boldsymbol{x} \in \bigcap_{n=\boldsymbol{1}} \boldsymbol{F} \boldsymbol{n}$.
Now, for any positive integer \boldsymbol{n},
$\boldsymbol{x}_{\boldsymbol{n}}, \boldsymbol{x}_{\boldsymbol{n}+1}, \boldsymbol{x}_{\boldsymbol{n}+2}, \ldots . \quad$ is a sequence in $\boldsymbol{F}_{\boldsymbol{n}}$ and this sequence converges to \boldsymbol{x}.
$\therefore x \in \bar{F}_{n}$ (by theorem 3.2)

But \bar{F}_{n} is closed and hence $\overline{F_{n}}=F_{n}$.
$\therefore x \in F_{n}$.
$\therefore x \in \bigcap_{n=1}^{\infty} F_{n}$.

Conversely let, $\left(\boldsymbol{x}_{\boldsymbol{n}}\right)$ is a Cauchy sequence in \boldsymbol{M}.

Let $F_{1}=\left\{x_{1}, x_{2}, \ldots \ldots, x_{n}, \ldots.\right\}$
$F_{1}=\left\{x_{2}, x_{3}, \ldots \ldots, x_{n}, \ldots.\right\}$
....
....
$F_{n}=\left\{x_{n}, x_{n+1}, x_{n+2}, \ldots.\right\}$

Clearly $F_{1} \supseteq F_{2} \supseteq \cdots \supseteq F_{n} \supseteq \cdots$
$\therefore \bar{F} \supseteq \bar{F}_{2} \supseteq \cdots \supseteq \bar{F} \supseteq \cdots$
$\therefore \overline{(F})$ is a decreasing sequence of closed of closed sets.
Now, since $\left(\boldsymbol{x}_{\boldsymbol{n}}\right)$ is a Cauchy sequence given $\boldsymbol{\varepsilon}>\boldsymbol{0}$ there exists a positive integer $\boldsymbol{n}_{\mathbf{0}}$, such that $\boldsymbol{d}\left(\boldsymbol{x}_{\boldsymbol{m}}, \boldsymbol{x}_{\boldsymbol{n}}\right)<\boldsymbol{\varepsilon}$ for all $\boldsymbol{m}, \boldsymbol{n} \geq \boldsymbol{n}_{\mathbf{0}}$.
\therefore For any integer $\boldsymbol{n} \geq \boldsymbol{n}_{\mathbf{0}}$, the distance between any two points of $\boldsymbol{F}_{\boldsymbol{n}}$ is less than $\boldsymbol{\varepsilon}$.
$\therefore \boldsymbol{d}\left(\boldsymbol{F}_{\boldsymbol{n}}\right)<\boldsymbol{\varepsilon}$ for all $\boldsymbol{n} \geq \boldsymbol{n}_{\mathbf{0}}$
But $\boldsymbol{d}\left(\boldsymbol{F}_{\boldsymbol{n}}\right)=\boldsymbol{d} \overline{(\underline{n}}$.
$\therefore \boldsymbol{d}(\overline{\boldsymbol{n}})<\boldsymbol{\varepsilon}$ for all $\boldsymbol{n} \geq \boldsymbol{n}_{\mathbf{0}}$
$\left(\boldsymbol{d}\left(\overline{F_{n}}\right)\right) \rightarrow \mathbf{0}$.
Hence $\bigcap_{n=1}^{\infty}-\breve{F}_{n}$ is nonempty
Let $\boldsymbol{x} \in \bigcap_{\boldsymbol{n}=\mathbf{1}}^{\infty} \overline{\boldsymbol{F}_{\boldsymbol{n}}}$ Then \boldsymbol{x} and $\boldsymbol{x}_{\boldsymbol{n}} \in \overline{\boldsymbol{F}_{\boldsymbol{n}}}$
$\therefore \boldsymbol{d}\left(\boldsymbol{x}_{\boldsymbol{n}}, \boldsymbol{x}\right) \leq \boldsymbol{d}\left(\overline{(F}_{\boldsymbol{n}}\right)$.
$\therefore \boldsymbol{d}\left(\boldsymbol{x}_{\boldsymbol{n}}, \boldsymbol{x}\right)<\varepsilon$ for all $\boldsymbol{n} \geq \boldsymbol{n}_{\mathbf{0}}$ (by(5))
$\therefore\left(x_{n}\right) \rightarrow x$.
$\therefore M$ is complete.

Definition:

A subset of a metric space M is said to be nowhere dense in M if $\operatorname{Int} A=\phi$.

Definition:

A subset of a metric space M is said to be of first category in M if A can be expressed as a countable union of nowhere dense sets.

A set which is not of first category is said to be of second category.

Remark:

Let M be a metric space and $A \subseteq B$. Then the following are equivalent.
(i) $\quad \mathrm{A}$ is nowhere dense in M .
(ii) $\overline{\mathrm{A}}$ does not contain any non - empty open set.
(iii) Each non-empty open set has a non- empty open subset disjoint from $\overline{\mathrm{A}}$.
(iv) Each non - empty open set has a non -empty open subset disjoint from A.
(v) Each non - empty open set contains an open sphere disjoint form A.

Theorem2.9: (Baire's Category Theorem)

Any complete metric space is of second category.
Proof: Let M be a complete metric space.
Claim: M is not of first category.
Let $\left(A_{n}\right)$ be a sequence of nowhere dense sets in M.
Since M is open and A_{1} is nowhere dense, there exists an open ball say B_{1} of radius less than 1 such that B_{1} is disjoint from A_{1}. (since by above remark).

Let F_{1} denote the concentric closed ball whose radius is $\frac{1}{2}$ times that of B_{1}.
Now, Int F_{1} is open and A_{2} is nowhere dense.
\therefore Int F1 contains an open ball B2 of radius less than $1 / 2$ such that B2 is disjoint from A 2 .

Let F_{2} be a concentric closed ball whose radiuts is
A_{3} is nowhere dense.
\therefore Int F2 contains an open ball B2 of radius less than $1 / 2$ such that B3 is disjoint from A3.

Let F_{3} be a concentric closed ball whose radius is $1 / 2$ times that of B_{3}.
Proceeding like this we get a sequence of nonempty closed balls F_{n} such that
$F_{1} \supseteq F_{2} \supseteq \cdots \supseteq F_{\mathrm{n}} \supseteq \cdots \quad$ and $d\left(F_{\mathrm{n}}\right)<1 / 2^{\mathrm{n}}$

Hence $\left(d\left(F_{n}\right)\right) \rightarrow 0$ as $n \rightarrow \infty$.
Since M is complete, by Cantor's intersection theorem, there exists a point x in M such that $x \in \bigcap_{n=1}^{\infty} F_{n}$.

Also each F_{n} is disjoint from A_{n}.
Hence, $x \notin F_{n}$ for all n.
$\therefore x \notin \cup_{n=1}^{\infty} A_{n}$.
$\therefore \mathrm{U}_{n=1}^{\infty} A_{n} \neq M$. Hence M is of second category.
Corollary: R is of second category.

UNIT - III

COUNTINUITY

Definition:

let $\left(M_{1}, d_{1}\right)$ and $\left(M_{2}, d_{2}\right)$ be metric spaces.
Let $f: M_{1} \rightarrow M_{2}$ be a function. Let $a \in M_{1}$ and $l \in M_{2}$. The function f is said to have a limit as
$x \rightarrow a$ if given $\varepsilon>0$, there exists $\delta>0$ such that,
$0<d_{1}(x, a)<\delta \Rightarrow d_{2}(f(x), l)<\varepsilon$.
We write $\lim _{x \rightarrow a} f(x)=l$.

Definition :

Let $\left(M_{1}, d_{1}\right)$ and $\left(M_{2}, d_{2}\right)$ be metric spaces. Let $a \in M_{1}$.A function $f: M_{1} \rightarrow M_{2}$ is said to be continuous at a if given $\varepsilon>0$, there exists $\delta>0$ such that,
$d_{1}(x, a)<\delta \Rightarrow d_{2}(f(x), f(a))<\varepsilon$.
f is said to be continuous if its continuous at every point of M_{1}.

Note:1

f is continuous at a iff $\lim _{x \rightarrow a} f(x)=f(a)$.

Note: 2

The condition $d_{1}(x, a)<\delta \Rightarrow d_{2}(f(x), f(a))<\varepsilon$ can be rewritten as
(i) $\quad x \in B(x, \delta) \Rightarrow f(x) \in B(f(a), \varepsilon)$ or
(ii) $\quad f(B(a, \delta)) \subseteq B(f(a), \varepsilon)$.

Theorem 3.1:

Let $\left(M_{1}, d_{1}\right)$ and $\left(M_{2}, d_{2}\right)$ be metric spaces. Let $a \in M_{1}$. A function $f: M_{1} \rightarrow M_{2}$ is continuous at a iff $\left(x_{n}\right) \rightarrow a \Rightarrow\left(f\left(x_{n}\right)\right) \rightarrow f(a)$.
Proof: Suppose f is continuous at a.
Let $\left(x_{n}\right)$ be a sequence in M_{1} such that $\left(x_{n}\right) \rightarrow a$.
Claim: $\left(f\left(x_{n}\right)\right) \rightarrow f(a)$.
Let $\varepsilon>0$ be given. By definition of continuity, there exists $\delta>0$ such that, $d_{1}(x, a)<\delta \Rightarrow d_{2}(f(x), f(a))<\varepsilon$.
Since $\left(x_{n}\right) \rightarrow a$, there exists a positive integer n_{0} such that $d_{1}\left(x_{n}, a\right)<\delta$ for all $n \geq n_{0}$.
$\therefore d_{2}(f(x), f(a))<\varepsilon$ for all $n \geq n_{0}$. (by(1))
$\therefore\left(f\left(x_{n}\right)\right) \rightarrow f(a)$.
Conversely, suppose $\left(x_{n}\right) \rightarrow a \Rightarrow\left(f\left(x_{n}\right)\right) \rightarrow f(a)$.
Claim: f is continuous at a.
Suppose f is not continuous at a. Then there exists an $\varepsilon>0$ such that for all $\delta>0$, $f(B(a, \delta)) \not \subset B(f(a), \varepsilon)$

In particular, $f(B(a, \underline{1})) \not \subset B(f(a), \varepsilon)$.
Choose x_{2} such that $x_{n}^{n} \in B(a, \underset{n}{1})$ and $\left(x_{n}\right) \notin B(f(a), \varepsilon)$.
$\therefore d_{1}\left(x_{n}, a\right)<\underset{n}{1}$ and $d_{2}(f(x), f(a)) \geq \varepsilon$.
$\left(x_{n}\right) \rightarrow a$ and $\left(f\left(x_{n}\right)\right)$ not converges to $f(a)$ which is a contradiction to the hypothesis. Hence, f is continuous at a.
Corollary 1:A function $f: M_{1} \rightarrow M_{2}$ is continuous at a iff $\left(x_{n}\right) \rightarrow x \Rightarrow\left(f\left(x_{n}\right)\right) \rightarrow f(x)$.

Theorem 3.2:

Let (M_{1}, d_{1}) and (M_{2}, d_{2}) be metric spaces. $f: M_{1} \rightarrow M_{2}$ is continuous iff $f^{-1}(G)$ is open in M_{1} whenever G is open in M_{2}.
(i.e) f is continuous iff inverse image of every open set is open.

Proof:
Suppose f is continuous
Let G be an open set in M_{2}.
Claim: $f^{-1}(G)$ is open in M_{2}.
If $f^{-1}(G)$ is empty, then it is open. Let $f^{-1}(G) \neq \phi$.
Let $x \in f^{-1}(G)$. Hence $f(x) \in G$.
Since G is open, there exists an open ball $B(f(x), \varepsilon)$ such that $B(f(x), \varepsilon) \subseteq G$.
Now, by definition of continuity, there exists an open ball $B(x, \delta)$ such that $f(B(x, \delta)) \subseteq$ $B(f(x), \varepsilon)$.
$\therefore f(B(x, \delta)) \subseteq G \quad(b y(1))$
$\therefore B(x, \delta) \subseteq f^{-1}(G)$
Since $x \in f^{-1}(G)$ is arbitrary, $f^{-1}(G)$ is open.
Conversely, suppose $f^{-1}(G)$ is open in M_{1} whenever G is open in M_{2}.
we claim that f is continuous.
Let $x \in M_{1}$.
Now, $B(f(x), \varepsilon)$ is an open set in $M 2$.
$\therefore f^{-1}\left(B(f(x), \varepsilon)\right.$ is open in M_{1} and $x \in f^{-1}(B(f(x), \varepsilon)$.
Therefore there exists $\delta>0$ such that $B(x, \delta) \subseteq f^{-1}(B(f(x), \varepsilon)$.
$\therefore f(B(x, \delta)) \subseteq(B(f(x), \varepsilon)$.
$\therefore f$ is continuous at x.
Since $x \in M_{1}$ is arbitrary f is continuous.

Theorem 3.3:

Let $\left(M_{1}, d_{1}\right)$ and $\left(M_{2}, d_{2}\right)$ be two metric spaces. A function $f: M_{1} \rightarrow M_{2}$ is continuous iff $f^{-1}(F)$ is closed in M_{1} whenever F is closed in M_{2}.

Proof: Suppose $f: M_{1} \rightarrow M_{2}$ is continuous.
Let $F \subseteq M_{2}$ be closed in M_{2}.
$\therefore F c$ is open in M_{2}.
$\therefore f^{-1}\left(F^{c}\right)$ is open in M_{1}.
Conversely, suppose $f^{-1}(F)$ is closed in M_{1} whenever F is closed in M_{2}.
We claim that f is continuous.
Let G be an open set in M_{2}.
$\therefore G^{c}$ is open in M_{2}.
$\therefore f^{-1}\left(G^{c}\right)$ is closed in M_{1}.
$\therefore\left[f^{-1}(G)\right]^{c}$ is closed in M_{1}.
$\therefore f^{-1}(G)$ is open in M_{1}.
$\therefore f$ is continuous.

Theorem 3.4:

Let $\left(M_{1}, d_{1}\right)$ and $\left(M_{2}, d_{2}\right)$ be two metric spaces. A function $f: M_{1} \rightarrow M_{2}$ is continuous iff $f(A) \subseteq f \overline{(} \bar{A})$ for all $A \subseteq M_{1}$.

Proof:

Suppose f is continuous.
Let $A \subseteq M_{1}$. Then $f(A) \subseteq M_{2}$.
Since f is continuous, $f^{-1}(f \overline{(\mathrm{~A})})$ is closed in M_{1}
Also $f^{-1}(\overline{f(\mathrm{~A})}) \supseteq A$ (since $\left.\overline{f(\mathrm{~A})} \supseteq f(A)\right)$
But $\not \subset$ is the smallest closed set containing A.
$\therefore \bar{A} \subseteq f^{-1}(\overline{f(A)})$
$\therefore f(A) \subseteq \overline{f(A)}$
Conversely, let $f(A) \subseteq f \overline{(} \bar{A})$ for all $A \subseteq M_{1}$.
To prove: f is continuous.
We shall show that if F is a closed set in M_{2}, then $f^{-1}(F)$ is closed in M_{1}.
By hypothesis, $f\left(\overline{f^{-1}(\mathrm{~F})}\right) \subseteq \overline{f f^{-1}(\mathrm{~F})}$

$$
\subseteq \bar{F}
$$

$=F . \quad($ since F is closed. $)$
Thus $\left.f \overline{\left(f^{-1}(F)\right.}\right) \subseteq F$.
$\therefore f^{-1}(F) \subseteq f^{-1}(F)$
Also $f^{-1}(F) \subseteq \overline{f^{-1}(F)}$.
$f^{-1}(F)=\overline{f^{-1}(F)}$
Hence $f^{-1}(F)$ is closed.
$\therefore f$ is continuous.

3.2 Homeomorphism

Definition: Let $\left(M_{1}, d_{1}\right)$ and $\left(M_{2}, d_{2}\right)$ be two metric spaces. A function $f: M_{1} \rightarrow M_{2}$ is called a homeomorphism if
(i) fis 1-1 and onto.
(ii) f is continuous.
(iii) $\quad f^{-1}$ is continuous.
M_{1} and M_{1} are said to be homeomorphic if there exists a homeomorphismf: $M_{1} \rightarrow M_{2}$.
Definition: A function $f: M_{1} \rightarrow M_{2}$ is said to be an open map if $f(G)$ is open in M_{2} for every open set G in M_{1}.
(i.e) f is an open map if the image of an open set in M_{1} is an open set in M_{2}.
f is called a closed map if $f(F)$ is closed in M_{2} for every closed set F in M_{1}.
Note: Let $f: M_{1} \rightarrow M_{2}$ be a 1-1 onto function. Then f^{-1} is continuous iff f is an open map.
For, f^{-1} is continuous iff for any open set G in $M_{1}\left(f^{-1}\right)^{-1}(G)$ is open in M_{2}.
But, $\left(f^{-1}\right)^{-1}(G)=f(G)$.
$\therefore f^{-1}$ is continuous iff for every open set G in $M_{1}, f(G)$ is open in M_{2}.
$\therefore f^{-1}$ is continuous iff f is an open map.
Note: Similarly f^{-1} is continuous iff f is a closed map.
Note: Let $f: M_{1} \rightarrow M_{2}$ be a 1-1 onto map. Then the following are equivalent.
(i) $\quad f$ is homeomorphism.
(ii) f is continuous open map.
(iii) f is continuous closed map.

Proof:
(i) \Leftrightarrow (ii) follows from Note1 and the definition of homeomorphism.
(i) $) \Leftrightarrow$ (iii) follows from Note 2 and the definition of homeomorphism.

Note: Let $f: M_{1} \rightarrow M_{2}$ be a homeomorphism. $G \subseteq M_{1}$ is open in M_{1} iff $f(G)$ is open in M_{2}.

Note: Let $f: M_{1} \rightarrow M_{2}$ be a 1-1 onto map. Then f is a homeomorphism iff it satisfies the following condition.

Fis closed in M_{1} iff $f(F)$ is closed in M_{2}.

3.3 Uniform Continuity

Definition : Let $\left(M_{1}, d_{1}\right)$ and $\left(M_{2}, d_{2}\right)$ be two metric spaces. A function $f: M_{1} \rightarrow M_{2}$ is said to be uniformly continuous on M_{1} if given >0, there exists $\delta>0$ suchthat,
$d_{1}(x, y)<\delta \Rightarrow d_{2}(f(x), f(y))<\varepsilon$.

Problem 3.5: Prove that $f:[0,1] \rightarrow \boldsymbol{R}$ defined by $f(x)=x^{2}$ is uniformly continuous on $[0,1]$.

Solution:

Let $\varepsilon>0$ be given. Let $x, y \in[0,1]$.
Then $|f(x)-f(y)|=\left|x^{2}-y^{2}\right|=|x+y||x-y|$
$\leq 2|x-y| \quad($ since $x \leq 1$ and $y \leq 1)$
$\therefore|x-y|<\frac{1}{2} \Rightarrow|f(x)-f(y)|<\varepsilon$.
$\therefore f$ is uniformly continuous on $[0,1]$.

Problem 3.6: Prove that the function $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ defined by $f(x)=\sin x$ is uniformly continuous on \boldsymbol{R}.

Solution:

Let $x, y \in \operatorname{Rand} x>y$.
$\sin x-\sin y=(x-y) \cos z w h e r e x>z>y \quad$ (by mean value theorem)
$\therefore|\sin x-\sin y|=|x-y||\cos z|$
$\leq|x-y| \quad($ since $|\cos z| \leq 1)$.
Hence for a given >0, we choose $\delta=\varepsilon$, we have $|x-y|<\delta \Rightarrow|f(x)-f(y)|=$ $|\sin x-\sin y|<\varepsilon$.
$\therefore f(x)=\sin x$ is uniformly continuous on \boldsymbol{R}.

3.4 Discontinuous functions on r

Definition: A function $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ is said to approach to a limit l as x tends to a if given >0, there exists $\delta>0$ such that
$0<|x-a|<\delta \Rightarrow|f(x)-l|<$ eand we write $\lim _{x \rightarrow a} f(x)=l$.
Definition: A function f is that to have l as the right limit at $x=a$ if given $\varepsilon>0$, there exists
$\delta>0$ such that $a<x<a+\delta \Rightarrow|f(x)-l|<\varepsilon$ and we write $\lim _{x \rightarrow a+} f(x)=l$.
Also we denote the right limit lby $f(a+)$.
A function f is that to have l as the left limit at $x=a$ if given >0, there exists $\delta>0$ such that $a-\delta<x<a \Rightarrow|f(x)-l|<\varepsilon$ and we write $\lim _{x \rightarrow a-} f(x)=l$.
Also we denote the right limit l by $f(a-)$.
Note: $\lim _{x \rightarrow a} f(x)=l$ liff $\lim _{x \rightarrow a+} f(x)=\lim _{x \rightarrow a-} f(x)=l$.
(i.e.) $\lim _{x \rightarrow a} f(x)$ exists iff the left and right limits of $f(x)$ at $x=a$ exists and are equal.

Note: The definition of continuity of f at $x=a$ can be formulated as follows.
f is continuous at at a iff $f(a+)=f(a-)=f(a)$.
Note: If $\lim _{x \rightarrow a} f(x)$ does not exists then one of the following happens.
(i) $\quad \lim _{x \rightarrow a+} f(x)$ does not exists.
(ii) $\quad \lim _{x \rightarrow a-} f(x)$ does not exists.
(iii) $\lim _{x \rightarrow a-} f(x)$ and $\lim _{x \rightarrow a+} f(x)$ exist and are unequal.

Definition: If a function f is discontinuous at a then a is called a point of discontinuity for the function.

If a is a point of discontinuity of a function then any one of the following cases arises.
(i) $\quad \lim _{x \rightarrow a} f(x)$ exists but is not equal to $f(a)$.
(ii) $\quad \lim _{x \rightarrow a-} f(x)$ and $\lim _{x \rightarrow a+} f(x)$ exist and are not equal.
(iii) Either $\lim _{x \rightarrow a-} f(x)$ or $\lim _{x \rightarrow a+} f(x)$ does not exist.

Definition: let a be a point of discontinuity for $f(x)$. ais said to be a point of discontinuity of the first kind if $\lim _{x \rightarrow a-} f(x)$ and $\lim _{x \rightarrow a+} f(x)$ exist and both of them are finite and unequal.
ais said to be a point of discontinuity of the second kind if either $\lim _{x \rightarrow a-} f(x)$ or $\lim _{x \rightarrow a+} f(x)$ are does not exist.

Definition:Let $A \subseteq R$. Afunction $f: A \rightarrow \boldsymbol{R}$ is called monotonic increasing if $x, y \in A$ and $x<$ $y \Rightarrow f(x) \leq f(y)$.
f is called monotonic decreasing if $x, y \in A$ and $x>y \Rightarrow f(x) \geq f(y)$.
f is called monotonic if it is either monotonic increasing or monotonic decreasing.

Theorem 3.7:

Let $f:[a, b] \rightarrow \boldsymbol{R}$ be a monotonic increasing function. Then has a left limit and right limit at every point (a, b). Also f has a right limit at a and f has a left limit at b . Further $\mathrm{x}<\mathrm{y} \Rightarrow$ $f(x+) \leq f(y-)$.
Similar result is true for monotonic decreasing function.
Proof:
Let $f:[a, b] \rightarrow \boldsymbol{R}$ be a monotonic increasing function.
Let $\mathrm{x} \in[\mathrm{a}, \mathrm{b}]$. then $\{f(t) / a \leq t<x\}$ is bounded above by $f(x)$.
Let $l=l . u . b\{f(t) / a \leq t<x\}$
Claim: $f(x-)=l$
Let $\varepsilon>0$ be given .By definition l. u. b there exists t such that $a \leq t<x$ and $l--\varepsilon<f(t) \leq$ l

Therefore $t<u<x \Rightarrow l-\varepsilon<f(t) \leq f(u) \leq l$
(since f is monotonic increasing)
$\Rightarrow l-\varepsilon<f(u) \leq l$
$\therefore \boldsymbol{x}-\boldsymbol{\delta}<\boldsymbol{u}<\boldsymbol{x} \Rightarrow \boldsymbol{l}-\boldsymbol{\varepsilon}<\boldsymbol{f}(\boldsymbol{u}) \leq \boldsymbol{l}$ where $\delta=\boldsymbol{x}-\boldsymbol{t}$
$\therefore \mathbf{f}(\mathbf{x}-)=\mathbf{l}$
Similarly we can prove that $\boldsymbol{f}(\boldsymbol{x}+)=\boldsymbol{g} . \boldsymbol{l} . \boldsymbol{b}\{\boldsymbol{f}(\boldsymbol{t}) / \boldsymbol{x}<\boldsymbol{t} \leq \boldsymbol{b}\}$
To Prove : $\boldsymbol{x}<\boldsymbol{y} \Rightarrow \boldsymbol{f}(\boldsymbol{x}+) \leq \boldsymbol{f}(\boldsymbol{y}-)$
Let $\boldsymbol{x}<\boldsymbol{y}$
Now, $\boldsymbol{f}(\boldsymbol{x}+)=\boldsymbol{g} . \boldsymbol{l} . \boldsymbol{b}\{\boldsymbol{f}(\boldsymbol{t}) / \boldsymbol{x}<\boldsymbol{t} \leq \boldsymbol{b}\}$
$=\boldsymbol{g} \cdot \boldsymbol{l} . \boldsymbol{b}\{\boldsymbol{f}(\boldsymbol{t}) / \boldsymbol{x}<\boldsymbol{t} \leq \boldsymbol{y}\}$
(since f is monotonic increasing)
Also, $f(y-)=l . u . b\{f(t) / a \leq t<y\}$
$=l . u \cdot b\{f(t) / x \leq t<y\}$
$f(x+) \leq, f(y-)$
The proof of monotonic decreasing function is similar.

Theorem 3.8:

Let $f:[a, b] \rightarrow R$ be a monotonic function. Then the set of points of $[a, b]$ at which f is discontinuous is countable.

Proof:
Let $\mathrm{E}=\{\boldsymbol{x} / \boldsymbol{x} \in[\boldsymbol{a}, \boldsymbol{b}]$ and \boldsymbol{f} is discontinuous at x$\}$

Let $\boldsymbol{x} \in \boldsymbol{E}$. then by previous theorem,
$f(x+)$ and $f(x-)$ exists and $f(x-) \leq f(x) \leq f(x+)$
If $f(x-)=f(x+)$ then $f(x-)=f(x)=f(x+)$
$\therefore \boldsymbol{f}$ is continuous at \boldsymbol{x} which is a contradiction.
$\therefore \boldsymbol{f}(\boldsymbol{x}-) \neq \boldsymbol{f}(\boldsymbol{x}+)$
$\therefore \boldsymbol{f}(\boldsymbol{x}-)<\boldsymbol{f}(\boldsymbol{x}+)$
Now choose a rational number $\boldsymbol{r}(\boldsymbol{x})$ such that $\boldsymbol{f}(\boldsymbol{x}-)<\boldsymbol{r}(\boldsymbol{x})<\boldsymbol{f}(\boldsymbol{x}+)$.
This define a map \boldsymbol{r} from \boldsymbol{E} to \boldsymbol{Q} which maps \boldsymbol{x} to $\mathrm{r}(\boldsymbol{x})$.
Claim: r is 1-1
Let $\boldsymbol{x}_{1}<\boldsymbol{x}_{2}$
$\therefore \boldsymbol{f}\left(\boldsymbol{x}_{1}+\right)<\boldsymbol{f}\left(\boldsymbol{x}_{2}-\right)$ (by previous theorem)
Also, $f\left(x_{1}-\right)<r\left(x_{1}\right)=f\left(x_{1}+\right)$
And $f\left(x_{2}-\right)<r\left(x_{2}\right)=f\left(x_{2}+\right)$.
$\therefore r\left(x_{1}\right)<\boldsymbol{f}\left(x_{2}+\right)<\boldsymbol{f}\left(x_{2}-\right)<r\left(x_{2}\right)$.
Thus $x_{1}<x_{2} \Rightarrow r\left(x_{1}\right)<r\left(x_{2}\right)$.
Therefore, $\boldsymbol{r}: \boldsymbol{E} \rightarrow \boldsymbol{Q}$ is 1-1. Hence \boldsymbol{E} is countable

UNIT - IV

CONNECTEDNESS

Definition: Let (M, d) be a metric space. M is said to be connected if M cannot be represented as the union of two disjoint nonempty open sets.

If M is not connected it is to be disconnected.

Example: Let $M=[1,2] \cup[3,4]$ with usual metric. Then M is disconnected.
Proof:
[1,2] and[3,4] are open in M.
Thus, M is the union of two disjoint nonempty open dets namely [1,2] and [3,4].
Hence M is disconnected.

Theorem 4.1:

Let (M, d) be a metric space. Then the following are equivalent.
i) M is connected.
ii) M cannot be written as the union of two disjoint nonempty closed sets.
iii) M cannot be written as the union of two nonempty sets A and B such that $A \cap B=A \cap$ $B=\phi$.
iv) M and ϕ are the only sets which are both open and closed in M.

Proof:
(i) \Rightarrow (ii)

Suppose (ii) is true.
$\therefore M=A \cup B$ where A and B are closed $A \neq \phi, B \neq \phi$ and $A \cap B=\phi$.
$\therefore A^{c}=B$ and $B^{c}=A$.
Since A and B are closed, A^{c} and B^{c} are open.
$\therefore B$ and A are open.
Thus M is the union of two disjoint nonempty open sets.
$\therefore M$ is not connected which is a contradiction.
\therefore (i) \Rightarrow (ii)
(ii) \Rightarrow (iii)

Suppose (iii) is not true.
Then $M=A \cup B$ where $A \neq \phi, B \neq \phi$ and $A \cap B=A \cap B=\phi$.
Claim: A and B are closed.
Let $x \in A$.
$\therefore x \notin B \quad($ since $A \cap B=\phi)$
$\therefore x \in A \quad($ since $A \cup B=M)$
$A \subseteq A$.
But $A \subseteq A$.
$\therefore A=A$ and hence A is closed.
Similarly B is closed.

Now, $A \cap B=A \cap B . \quad($ since $A=A)$.

$$
=\phi
$$

Thus $M=A \cup B$ where $A \neq \phi, B \neq \phi, A$ and B are closed and $A \cap B=\phi$ which is contradiction to (ii).
\therefore (ii) \Rightarrow (iii)
(iii) \Rightarrow (iv)

Suppose (iv) is not true.
Then there exists $A \subseteq M$ such that $A \neq M$ such that $A \neq M$ and $A \neq \phi$ and A is both open and closed.
Let $B=A^{c}$.
Then B is also both open and closed and $B \neq \phi$.
Also $M=A \cup B$.
Further $A \cap B=A \cap A^{c} . \quad\left(\right.$ since $A=A$ and $\left.A=A^{c}\right)$

$$
=\phi
$$

Similarly $A \cap B=\phi$.
$\therefore M=A \cup B$ where $A \cap B=\phi=A \cap B$ which is a contradiction to (iii).
\therefore (iii) \Rightarrow (iv).
(iv) \Rightarrow (i).

Suppose M is not connected.
$\therefore M=A \cup B$ where $A \neq \phi, B \neq \phi, A$ and B are open and $A \cap B=\phi$.
Then $B^{c}=A$.
Now, since B is open A is closed.
Also $A \neq \phi$ and $A \neq M$. (since $B \neq \phi$)
\therefore Ais a proper non empty subset of M which is both open and closed which is a contradiction to (iv).
\therefore (iv)) $\Rightarrow(\mathrm{i})$.

Theorem 4.2

A metric space M is connected iff there does not exist a continuous function f from M onto the discrete metric space $\{0,1\}$.
Proof: Suppose there exists a continuous function f from Monto $\{0,1\}$.
Since $\{0,1\}$ is discrete, $\{0\}$ and $\{1\}$ are open.
$\therefore A=f^{-1}(\{0\})$ and $B=f^{-1}(\{1\})$ are open in M.
Since f is onto, A and B are non empty.
Clearly $A \cap B=\phi$ and $A \cup B=M$.
Thus $M=A \cup B$ where A and B are disjoint nonempty open sets.
$\therefore M$ is not connected which is a contradiction.
Hence there does not exist a continuous function from onto the discrete metric space $\{0,1\}$. Conversely, suppose M is not connected.
Then, there exists a disjoint nonempty open sets A and B in M such that $M=A \cup B$.

Now, define $f: M \rightarrow\{0,1\}$ by $f(x)=\left\{\begin{array}{l}0 \text { if } x \in A \\ 1 \text { if } x \in B\end{array}\right.$
Clearly f is onto.
Also, $f^{-1}(\phi)=\phi, f^{-1}(\{0\})=a, f^{-1}(\{1\})=B$ and $f^{-1}(\{0,1\})=M$.
Thus the inverse image of every open set in $\{0,1\}$ is open in M.
Hence f is continuous.
Thus there exists a continuous function f from M onto $\{0,1\}$. which is a contradiction.
Hence M is not connected.

Problem 4.3:
Let M be a metric space. Let A be a connected subset of M. If B is a subset of of M such that $A \subseteq B \subseteq A$ then B is connected. In particular A is connected.
Solution: Suppose B is not connected.
Then $B=B_{1} \cup B_{2}$ where $B_{1} \neq \phi, B_{2} \neq \phi, B_{1} \cap B_{2}=\phi$ and B_{1} and B_{2} are open in B.
Now, since B_{1} and B_{2} are open sets in B there exists open sets G_{1} and G_{2} in M such that $B_{1}=$ $G_{1} \cap B$ and $B_{2}=G_{2} \cap B$.
$\therefore B=B_{1} \cup B_{2}=\left(G_{1} \cap B\right) \cup\left(G_{2} \cap B\right)=\left(G_{1} \cup G_{2}\right) \cap B$.
$\therefore B \subseteq G_{1} \cup G_{2}$.
$\therefore A \subseteq G_{1} \cup G_{2} \quad($ since $A \subseteq B)$
$\therefore A=\left(G_{1} \cup G_{2}\right) \cap A$.
$=\left(G_{1} \cap A\right) \cup=\left(G_{1} \cap A\right)$.
Now, $G_{1} \cap A$ and $G_{2} \cap A$ are open in A.
Further, $\left(G_{1} \cap A\right) \cup\left(G_{2} \cap A\right)=\left(G_{1} \cup G_{2}\right) \cap A$.
$=\left(G_{1} \cup G_{2}\right) \cap B \quad($ since $A \subseteq B)$
$=\left(G_{1} \cap B\right) \cap\left(G_{2} \cap B\right)$
$=B_{1} \cap B_{2}$.
$=\phi$.
$\therefore\left(G_{1} \cap A\right) \cup\left(G_{2} \cap A\right)=\phi$.
Now, since A is connected, either $G_{1} \cap A=\phi$ or $G_{2} \cap A=\phi$.
Without loss of generality let us assume that $G_{1} \cap A=\phi$.
Since G_{1} is open in M, we have $G_{1} \cap A=\phi$.
$\therefore G_{1} \cap B=\phi . \quad$ (since $B \subseteq A$)
$\therefore B_{1}=\phi$ which is a contradiction.
Hence B is not connected.

4.2 Connected Subsets of \boldsymbol{R}

Theorem 4.4:

A subspace of \boldsymbol{R} is connected iff it is an interval.

Proof:

Let A be a connected subset of \boldsymbol{R}.
Suppose A is not an interval.

Then there exists $a, b, c \in \boldsymbol{R}$ such that, $a<b<c$ and $a, c \in A$ but $b \notin A$.
Let $A_{1}=(-\infty, b) \cap A$ and $A_{2}=(b, \infty) \cap A$.
Since $(-\infty, b)$ and (b, ∞) are open in \boldsymbol{R}, A_{1} and A_{2} are open sets in A.
Also, $A_{1} \cap A_{2}=\phi$ and $A_{1} \cup A_{2}=A$.
Further $a \in A_{1}$ and $c \in A_{2}$.
Hence $A_{1} \neq \phi$ and $A_{2} \neq \phi$.
Thus A is the union of two disjoint nonempty open sets A_{1} and A_{2}.
Hence A is not connected which is a contradiction.
Hence A is an interval.
Conversely, let A be an interval.
Claim: A is connected.
Suppose A is not connected.
Let $A=A_{1} \cup A_{2}$ where $A_{1} \neq \phi, A_{2} \neq \phi, A_{1} \cap A_{2}=\phi$ and A_{1} and A_{2} are closed in A.
Choose $x \in A_{1}$ and $z \in A_{2}$.
Since $A_{1} \cap A_{2}=\phi$ we have $x \neq z$.
Without loss of generality let us assume that $x<z$.
Now, since A is an interval we have $[x, z] \subseteq A$.
(i.e) $[x, z] \subseteq A_{1} \cup A_{2}$.
\therefore Every element of $[x, z]$ is either in A_{1} or in A_{2}.
Now, let $y=l . u . b .\left\{[x, z] \cap A_{1}\right\}$.
Clearly $x \leq y \leq z$.
Hence $y \in A$.
Let $\varepsilon>0$ be given. Then by the definition of l. u.b. there exists $t \in[x, z] \cap A_{1}$ such that $y-$ $\varepsilon<t \leq y$.
$\therefore(y-\varepsilon, y+\varepsilon) \cap\left([x, z] \cap A_{1}\right) \neq \phi$.
$\therefore y \in[x, z] \cap A_{1}$
$\therefore y \in[x, z] \cap A_{1}$
$\therefore y \in A_{1}$.
Again by the definition of $y, y+\varepsilon \in A_{2}$ for all $\varepsilon>0$ such that $y+\varepsilon \leq z$.
$\therefore y \in^{-} A_{2}^{-}$
$\therefore y \in A_{2} \quad$ (since A_{2} is closed)
$\therefore y \in A_{1} \cap A_{2}\left[b y(1)\right.$ and (2)] which is a contradiction since $A_{1} \cap A_{2}=\phi$.
Hence A is connected.

Theorem 4.5:
\boldsymbol{R} is connected.
Proof: $\boldsymbol{R}=(-\infty, \infty)$ is an interval.
\therefore Ris connected.

4.3 Connectedness and Continuity Theorem 4.6:

Let M_{1} be a connected metric space. Let M_{2} be any metric space. Let $f: M_{1} \rightarrow M_{2}$ be a continuous function. Then $f\left(M_{1}\right)$ is a connected subset of M_{2}.
(i.e) Any continuous image of a connected set is connected.

Proof:
Let $f\left(M_{1}\right)=A$ so that f is function on M_{1} onto A.
Claim: A is connected.
Suppose A is not connected. Then there exists a proper non empty subset of B of A which is both open and closed in A.
$\therefore f^{-1}(B)$ is a proper nonempty subset of M_{1} which is both open and closed in M_{1}.
Hence M_{1} is not connected which is contradiction.
Hence A is connected.

Theorem 4.7: Intermediate value theorem

Let f be a real valued continuous function defined on an interval I. Then f takes every value between any two values it assumes
Proof:
Let $a, b \in \operatorname{Iand} f(a) \neq f(b)$.
Without loss of generality we assume that $f(a)<f(b)$.
Let c be such that $f(a)<c<f(b)$.
The interval I is a connected subset of \boldsymbol{R}.
$\therefore f(I)$ is a connected subset of \boldsymbol{R}. (by theorem 4.6)
$\therefore f(I)$ is an interval. (by theorem 4.6)
Also $f(a), f(b) \in f(I)$. Hence $[f(a), f(b)] \subseteq f(I)$.
$\therefore c \in f(I) \quad$ (since $f(a)<c<f(b))$
$\therefore c=f(x)$ for some $x \in I$.

4.2 Compact Metric Spaces

Definition: Let M be a metric space. A family of open sets $\left\{G_{\alpha}\right\}$ in M is called an open cover for M if $\cup G_{\alpha}=M$.
A subfamily of $\left\{G_{\alpha}\right\}$ which itself is an open cover is called a subcover.
A metric space M is said to be compact if every open cover for M has finite subcover.
(i.e) for each family of open sets $\left\{G_{\alpha}\right\}$ such that $\cup G_{\alpha}=M$, there exists a finite subfamily
$\left\{G_{\alpha}, G_{\alpha}, \ldots \ldots, G_{\alpha}\right\}$ such that $\bigcup_{i=1}^{n} G_{i}=M$.

Theorem 4.8:

Let M be a metric space. Let $A \subseteq M$. Ais compact iff given a family of open sets $\left\{G_{\alpha}\right\}$ in M such that $\cup G_{\alpha} \supseteq A$ there exists a subfamily
$G_{1}, G_{\alpha}, \ldots \ldots, G_{i}$ such that $\bigcup_{i=1}^{n} G_{i} \subseteq A$.

Proof:

Let A be a compact subset of M.
Let $\left\{G_{\alpha}\right\}$ be a family of open sets in M such that $\cup G_{\alpha} \supseteq A$.

Then $\left(U G_{\alpha}\right) \cap A=A$.
$\therefore \cup\left(G_{\alpha} \cap A\right)=A$.
Also $G_{\alpha} \cap A$ is open in A.
\therefore The family $\left\{G_{\alpha} \cap A\right\}$ is an open cover for A.
Since A is compact this open cover has a finite subcover, say, $G_{\alpha_{1}} \cap A, G_{\alpha_{2}} \cap A, \ldots \ldots, G_{\alpha_{n}} \cap A$.
$\therefore \bigcup_{i=1}^{n}\left(G_{\alpha_{i}} \cap A\right)=A$.
$\therefore\left(\cup_{i=1}^{n} G \alpha_{i}\right) \cap A=A$.
$\therefore \bigcup_{i=1}^{n} G_{\alpha_{i}} \subseteq A$.
Conversely let $\left\{H_{\alpha}\right\}$ be an open cover for A.
\therefore Each H_{α} is open in A.
$\therefore H_{\alpha}=G_{\alpha} \cap A$ where G_{α} is open in M.
Now, $\cup H_{\alpha}=A$.
$\therefore \cup\left(G_{\alpha} \cap A\right)=A$.
$\therefore\left(\cup G_{\alpha}\right) \cap A=A$.
$\therefore \cup G_{\alpha} \supseteq A$.
Hence by hypothesis there exists a finite subfamily $\underset{1}{G_{\alpha}, G_{\alpha}, \ldots \ldots, G_{\alpha}}$ such that $\bigcup_{i=1}^{n} G_{i} \subseteq A$.
$\therefore\left(\cup_{i=1}^{n} G_{\alpha_{i}}\right) \cap A=A$.
$\therefore \cup_{i=1}^{n}\left(G_{\alpha_{i}} \cap A\right)=A$.
$\therefore \bigcup_{i=1}^{n} H_{\alpha_{i}}=A$.
Thus $\left\{H_{\alpha_{1}}, H_{\alpha_{2}}, \ldots \ldots, H_{\alpha_{n}}\right\}$ is a finite subcover of the open cover $\left\{H_{\alpha}\right\}$.
\therefore Ais compact.

Theorem 4.9:

Any compact subset A of a metric space M is bounded.

Proof:

Let $x_{0} \in A$.
Consider $\left\{B\left(x_{0}, n\right) \mid n \in N\right\}$.
Clearly $\cup_{i=1}^{n} B\left(x_{0}, n\right)=M$.
$\therefore \bigcup_{i=1}^{n} B\left(x_{0}, n\right) \supseteq A$.

Since A is compact there exists a finite subfamily say, $B\left(x_{0}, n_{1}\right), B\left(x_{0}, n_{2}\right), \ldots \ldots \ldots, B\left(x_{0}, n_{k}\right)$
such that $\bigcup_{i=1}^{k} B\left(x_{0}, n_{1}\right) \supseteq A$.
Let $n_{0}=\max \left\{n_{1}, n_{2}, \ldots \ldots, n_{k}\right\}$.
Then $\cup_{i=1}^{k} B\left(x_{0}, n_{i}\right)=B\left(x_{0}, n_{0}\right)$.
$\therefore B\left(x_{0}, n_{0}\right) \supseteq A$.
We know that $B\left(x_{0}, n_{0}\right)$ is a bounded set and a subset of a bounded set is bounded.
Hence A is bounded.

Theorem 4.10:
Any compact subset A of a metric space (M, d) is closed.

Proof:

To prove: A is closed. We shall prove that A^{c} is open.
Let $y \in A^{c}$ and let $x \in A$. Then $x \neq y$.
$\therefore d(x, y)=r_{x}>0$.
It can be easily verified that $B\left(x, \frac{1}{2} r_{x}\right) \cap B\left(y, \frac{1}{2} r_{x}\right)=\phi$.
Now consider the collection $\left\{B\left(x, \frac{1}{2} r_{x}\right) / x \in A\right\}$.
Clearly $\bigcup_{x \in A} B\left(x, \frac{1}{2} r_{x}\right) \supseteq A$.
Since A is compact there exists a finite number of such open balls say,
 \qquad
Now, let $V=\bigcap^{n}{ }_{i=1} B\left(y,{ }_{2}{ }_{2}^{r} r\right)$.
Clearly V_{y} is an open set containing y.
Since $B\left(y,{ }_{\frac{1}{2}}^{2} r_{y}\right) \cap\left(x,{ }^{1} r_{x}\right)=\phi$, we have $V_{y} \cap B\left(x,{ }_{2}{ }_{2} r_{x_{i}}\right)=\phi$ for each $i=1,2, \ldots \ldots, n$.
$\therefore V{ }_{y} \cap\left[\bigcup_{i=1}^{n} B\left(x,{ }_{2}^{1} r{ }_{2} x_{i}\right)\right]=\phi$.
$\therefore V_{y} \cap A=\phi . \quad$ (by (1)).
$\therefore V_{y} \subseteq A^{c}$.
$\therefore \bigcup_{y \in A c} V_{y}=A^{c}$ and each V_{y} is open.
$\therefore A^{c}$ is open. Hence A is closed.

Theorem 4.11:

A closed subspace of a compact metric space is compact.
Proof:
Let M be a compact metric space.
Let A be a nonempty closed subset of M.
Claim: A is compact.
Let $\left\{G_{\alpha} / \alpha \in I\right\}$ be a family of open sets in M such that, $\mathrm{U}_{\alpha \in I} G_{\alpha} \supseteq A$.
$\therefore A^{c} \cup\left[\bigcup_{\alpha \in I} G_{\alpha}\right]=M$.
Also A^{c} is open. (since A is closed).
$\therefore\left\{G_{\alpha} / \alpha \in I\right\} \cup\left\{A^{c}\right\}$ is an open cover for M.
Since M is compact it has a finite subcover say, $G_{\alpha_{p}} G_{\alpha_{2}} \ldots \ldots, G_{\alpha_{h}} A^{c}$.
$\therefore\left(\cup_{i=1}^{n} G_{\alpha_{i}}\right) \cup A^{c}=M$.
$\therefore \bigcup_{i=1}^{n} G_{\alpha_{i}} \supseteq A$.
\therefore Ais compact.

4.3 Compact Subsets of R.

Theorem 4.12: Heine-Borel Theorem
Any closed interval $[a, b]$ is a compact subset of \boldsymbol{R}.
Proof:
Let $\left\{G_{\alpha} / \alpha \in I\right\}$ be a family of open sets in \boldsymbol{R} such that $\mathrm{U}_{\alpha \in I} G_{\alpha} \supseteq[a, b]$.
Let $S=\left\{x \mid x \in[a, b]\right.$ and $[a, x]$ can be covred by a finite number of $\left.G^{\prime} S_{d}\right\}$.
Clearly $a \in S$ and hence $S \neq \phi$.
Also S is bounded above by b.
Let c denote the l. u. b.of S.
Clearly $c \in[a, b]$.
$\therefore c \in G_{\alpha_{1}}$ for some $\alpha_{1} \in I$.
Since $G_{\alpha_{1}}$ is open, there exists $\varepsilon>0$ such that $(c-\varepsilon, c+\varepsilon) \subseteq G_{\alpha_{1}}$.
Choose $x_{1} \in[a, b]$ such that $x_{1}<c$ and $\left[x_{1}, c\right] \subseteq G_{\alpha_{1}}$.
Now, since $x_{1}<c,\left[a, x_{1}\right]$ can be covered by a finite number of $G{ }_{\alpha} s$.
These finite number of $G \alpha^{\prime} s$ together with $G_{\alpha_{1}}$ covers $[a, c]$.
\therefore By definition of $S, c \in S$.
Now, we claim that $c=b$.
Suppose $c \neq b$.
Then choose $x_{2} \in[a, b]$ such that $x_{2}>c$ and $\left[c, x_{2}\right] \subseteq G_{\alpha_{1}}$.
As before, $\left[a, x_{2}\right]$ can be covered by a finite number of $G \alpha^{\prime} s$.
Hence $x_{2} \in S$.
But $x_{2}>c$ which is a contradiction, since c is the l. u. b.of S.
$\therefore c=b$.
$\therefore[a, b]$ can be covered by a finite number of $G{ }_{\alpha}{ }^{\prime} s$.
$\therefore[a, b]$ is a compact subset of \boldsymbol{R}.

Theorem 4.13:

Asubset of \boldsymbol{R} is compact iff A is closed and bounded.
Proof:
If A is compact then A is closed and bounded.
Conversely, let A be a subset of \boldsymbol{R} which is closed and bounded.
Since A is bounded we can find a closed interval $[a, b]$ such that $A \subseteq[a, b]$.
Since A is closed in R, A is closed in $[a, b]$ also.
Thus A is a closed subset of the compact space $[a, b]$.
Hence A is compact. (by theorem 4.11)

UNIT - V

RIEMAN INTEGRAL

If I is the integral of real number, the length of I is denoted by $|I|$.

Set of measure Zero:

A subset $E \subset R$ is said to be a measure Zero if for each $\varepsilon>0$, there exists a finite (or)
countable number of open intervals, I_{1}, I_{2}, \ldots. such that $E \subset \cup_{n=1}^{\infty} I_{n}$.
$\sum_{n=1}^{\infty}\left|I_{n}\right|<\varepsilon$.

Derivatives:

Let f be a real valued function defined on an Interval $[a, b] \subseteq R$. It is derivable at an interior point $c \in(a, b)$.
(i) If $\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$ exists.

$$
\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h} \text { exists. }
$$

Where $x=c+h \rightarrow x-c=h$.
(ii) $\quad \lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$ is called the left hand derivative $=L f^{\prime}(c)$.
(iii) $\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$ is called the right hand derivative $=R f^{\prime}(c)$
(iv) If $f^{\prime}(c)=L f^{\prime}(c)=R f^{\prime}(c)$ then we say $f(x)$ is derivable.
(v) $f^{\prime}(a)=\lim _{x \rightarrow a^{+}} \frac{f(x)-f(a)}{x-a}$.
(vi) $\quad f^{\prime}(b)=\lim _{x \rightarrow b^{-}} \frac{f(x)-f(b)}{x-b}$.

Example 1:

Show that the function $f(x)=x^{2}$ is derivable in $[0,1]$.

Solution:

(i) Let $x_{0} \in(0,1)$

$$
\begin{aligned}
f^{\prime}\left(x_{0}\right) & =\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} . \\
& =\lim _{x \rightarrow x_{0}} \frac{x^{2}-x_{0}^{2}}{x-x_{0}} . \\
& =\lim _{x \rightarrow x_{0}} \frac{\left(x+x_{0}\right)\left(x-x_{0}\right)}{x-x_{0}} . \\
& =\lim _{x \rightarrow x_{0}}\left(x+x_{0}\right)=x_{0}+x_{0}=2 x_{0} .
\end{aligned}
$$

\therefore derivable exists an interior point.
(ii) $\quad f^{\prime}(0)=\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0^{+}} \frac{x^{2}-0}{x-0} . \\
& =\lim _{x \rightarrow 0^{+}} \frac{x^{2}}{x} . \\
& =\lim _{x \rightarrow 0^{+}} x=0 .
\end{aligned}
$$

$\therefore f^{\prime}(0)$ exists.
(iii) $\quad f^{\prime}(1)=\lim _{x \rightarrow f} \frac{f(x)-f(1)}{x-1}$

$$
\begin{aligned}
& =\lim _{x \rightarrow f} \frac{x^{2}-1}{x-1} \\
& =\lim _{x \rightarrow f} \frac{(x+1)(x-1)}{(x-1)} \\
& =\lim _{x \rightarrow f}(x+1)=1+1=2 .
\end{aligned}
$$

$\therefore f^{\prime}(1)$ exists.
Hence $f(x)$ is differentiable in the closed interval $(0,1)$.

Example 2:

A function f is defined on R where $f(x)\left\{\begin{array}{c}x \text { if } 0 \leq x<1 \\ 1 \text { if } x \geq 1\end{array}\right.$. Discuss the derivability at $x=1$.

Solution:

$L f^{\prime}(1)=\lim _{x \rightarrow 1^{-}} \quad \frac{f(x)-f(1)}{x-1}$.
$=\lim _{x \rightarrow 1^{-}} \frac{x-1}{x-1}$.
$=\lim _{x \rightarrow 1^{-}} 1$.
$\therefore L f^{\prime}(1)=1$.
$R f^{\prime}(1)=\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-1}$
$=\lim _{x \rightarrow 1^{+}} \frac{1-1}{x-1}^{x \rightarrow 1}$
$=0$.
$\therefore R f^{\prime}(1)=0$.
$L f^{\prime}(1) \neq R f^{\prime}(1)$.
(i.e.) $f^{\prime}(1)$ does not exists.
f is not derivable at $x=1$.

Example 3:

Discuss the derivability of $f(x)$ at $0, f(x)=|x|$.

Solution:

$$
\begin{aligned}
L f^{\prime}(0) & =\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(1)}{x-0} . \\
& =\lim _{x \rightarrow 0^{-}} \frac{-x-0}{x} . \\
& =\lim _{x \rightarrow 0^{-}} \frac{-x}{x} \\
& =\lim _{x \rightarrow 0^{-}} 1 . \\
L f^{\prime}(0) & =-1 . \\
R f^{\prime}(0) & =\lim _{x \rightarrow 0^{+}} f(x)-f(0) \\
& =\lim _{x \rightarrow 0^{+}} \frac{x-0}{x-0} . \\
& =\lim _{x \rightarrow 0^{+}} 1 \\
& =1 .
\end{aligned}
$$

$\therefore R f^{\prime}(1)=1$.
$L f^{\prime}(1) \neq R f^{\prime}(1)$.
(i.e.) $f^{\prime}(0)$ does not exists.
f is not derivable at $x=0$.

Example 4:

$f(x)=\left\{\begin{array}{c}x^{2} \sin x^{1} \text { if } x \neq 0 \\ 0 \text { if } x=0\end{array}\right.$.
Prove that f is derivable at $x=0$ but $\lim _{x \rightarrow 0} f^{\prime}(x) \neq f^{\prime}(0)$.

Solution:

$$
\begin{aligned}
L f^{\prime}(0) & =\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(1)}{x-0} \\
& =\lim _{x \rightarrow 0^{-}} \frac{x^{2} \sin _{\frac{1}{x}-0}^{1}}{x} \\
& =\lim _{x \rightarrow 0^{-}} \frac{x^{2}}{x} \sin \frac{1}{x} \\
& =\lim _{x \rightarrow 0^{-}} \sin \frac{1}{0}=0 .
\end{aligned}
$$

$L f^{\prime}(0)=0$.
$R f^{\prime}(0)=\lim _{x \rightarrow 0^{+}} \quad \begin{gathered}f(x)-f(0) \\ x-0\end{gathered}$.

$$
\begin{aligned}
& =\lim _{x \rightarrow 0^{+}} \frac{x^{2} \sin \frac{1}{x}-0}{x-0} \\
& =\lim _{x \rightarrow 0^{+}} x^{2} \sin \frac{1}{x} \\
& =\lim _{x \rightarrow 0^{+}} \sin _{\frac{1}{x}}^{1}
\end{aligned}
$$

$\therefore R f^{\prime}(1)=0$.
$L f^{\prime}(1)=R f^{\prime}(1)$.
Hence f is not derivable at $x=0$.

Theorem:

A function which is derivable at a point is necessarily continuous at that point.
Proof:
Let a function f be derivable at $x=c$.
Then $\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}$ exist.
To prove: f is continuous at $x=c . f(x)-f(c)=\frac{f(x)-f(c)}{x-c} \times(x-c)$
$\lim _{x \rightarrow c}[f(x)-f(c)]=\lim _{x \rightarrow c}\left[\frac{f(x)-f(c)}{x-c}(x-c)\right]$.
$=\left[\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}\right]\left[\lim _{x \rightarrow c}(x-c)\right]$.
$\lim _{x \rightarrow c}[f(x)-f(c)]=0$.
$\lim _{x \rightarrow c} f(x)-\lim _{x \rightarrow c} f(c)=0$.
$\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} f(c)$.
$\therefore \lim _{x \rightarrow c} f(x)=f(c)$.
$\therefore f$ is continuous in $x=c$.
Note:
Converse of this theorem need not be true.

Rolle's theorem:

If a function f defined on $[a, b]$ is,
(i) Continuous on $[a, b]$.
(ii) Derivable on (a, b).
(iii) $\quad f(a)=f(b)$ then there exists one real number c between $a \times b[a<c<b]$ such that $f^{\prime}(c)=0$.
Proof:
Since the function is continuous on $[a, b]$, it is bounded.
Let m and M are the infimum (g.l.b) and supremum (l.u.b) respectively of the function f then there exists points c and d in $[a, b]$ such that $f(c)=$ mand $f(d)=M$.
Case (i):
Let $m=M$, then f is constant.
$f(x)=M$ for all $x \in[a, b]$.
$\therefore f(x)=0$ for all $x \in[a, b]$.
For $c \in(a, b), f(c)=m$, that is $f^{\prime}(c)=0$ for all $c \in(a, b)$.
Case (ii):
Let $m \neq M$.
Now both m and M cannot be equal to $f(a)$.
$f(c)=m \neq f(a) \Rightarrow c \neq a$.
Similarly, $f(c)=M \neq f(b) \Rightarrow c \neq b$.
$\Rightarrow c \in(a, b)$.
Claim: $f^{\prime}(c)=0$.
If $f^{\prime}(c)<0$, there exists $\left(c, c+\delta_{1}\right)$ such that $f(x)<f(c)=M$ for all $x, x \in\left(c, c+\delta_{1}\right)$.
Which is a contradiction.
If $f^{\prime}(c)>0$, there exists $\left(c-\delta_{1}, c\right)$ such that $f(x)<f(c)=M$ for all $x, x \in\left(c-\delta_{1}, c\right)$.
Which is a contradiction.
Hence, $f^{\prime}(c)=0$.

Legrange's Mean Value Theorem

If a function f defined on $[a, b]$ is,
(i) Continuous on $[a, b]$.
(ii) Derivable on (a, b).
$f(a)=f(b)$ then there exists one real number c between $a \times b[a<c<b]$ such that $f^{\prime}(c)=$ $\frac{f(b)-f(a)}{b-a}$.
Proof:

Let $\phi(x)=f(x)+A x$ where A is a constant such that $\phi(a)=\phi(b)$.
Then $f(a)+A a=f(b)+A b$.
$A(b-a)=f(a)-f(b)$.
$=-[f(b)-f(a)]$
$A=\frac{-[f(b)-f(a)]}{b-a}$.
Since $\phi(x)$ is a sum of two continuous and derivable function.
(i) $\quad \phi$ is continuous on $[a, b]$.
(ii) ϕ is derivable on $[a, b]$.
(iii) $\quad \phi(a)=\phi(b)$.

Therefore by Rolle's theorem, there exists $c \in(a, b)$ such that $\phi^{\prime}(c)=0$.
(i.e) $f^{\prime}(c)+A=0$.
$f^{\prime}(c)=-A$.
$f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

Cauchy's Mean Value Theorem:

If two functions f, g defined on $[a, b]$ are
(i) Continuous on $[a, b]$.
(ii) Derivable on $[a, b]$.
(iii) $g^{\prime}(x) \neq 0$ for any $x \in(a, b)$ then there exists one real number c between a and b such that $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}$

The Fundamental Theorem of Calculus:

A function f is bounded and integrable on $[a, b]$ and there exists a function f such that $f^{\prime}=$ f on $[a, b]$. Then $\int_{a}^{b} f d x=f(b)-f(a)$.
Proof:
Given $\varepsilon>0$. There exists $\delta>0$ such that for every partition P where,
$P=\left\{a=x_{0}, x_{1}, \ldots \ldots \ldots, x_{n-1}, x_{n}=b\right\}$.
With norm $\mu(P)-\delta\left(\right.$ where $\left.\mu(P)=\max \Delta x_{i}\right)$.
$\left|\sum_{i=1}^{n} f(t) \Delta x-\int_{i}^{b} f d x\right|<\varepsilon$. [since $\left.t_{i} \in\left(x_{i-1}, x\right)\right]$.
$\Rightarrow \sum_{i=1}^{n} f\left(t_{i}\right) \Delta x=\int_{a}^{b} f d x$.
By Lagrange's Mean value Theorem, $\frac{f\left(x_{i}\right)-f\left(x_{i-1}\right)}{x_{i}-x_{i-1}}=f(t)$.
(i.e). $\frac{f\left(x_{i}\right)-f\left(x_{i-1}\right)}{\Delta x_{i}}=f(t)$.
$\Rightarrow f\left(x_{i}\right)-f\left(x_{i-1}\right)=f\left(t_{i}\right) \Delta x_{i}$.
Using (2) in (1) we get,
$\int_{a}^{b} f d x=\sum_{i=1}^{Z_{i}}\left[f(x)-f\left(x_{i=1}\right)\right]$.
$\int_{a}^{b} f d x=F(b)-F(a)$.

Page 47 of 47

